A simple egg salad can be made from a pair of hard boiled eggs, a tablespoon of mayonnaise, a tablespoon of pickle relish, a quarter of a teaspoon of European paprika (find a friend from Hungary or Serbia), and a dash of salt.

1. Compute \(\frac{dy}{dx} \) for the following expressions (5 points each) Do not simplify your results!

(a)
\[y = (x + 2)(x - 1)(x - 3) \]

(b)
\[y = \sqrt{\sin(x) \cos(x)} \]

(c)
\[y = \cos(e^x) \]

(d)
\[x^{\frac{3}{2}} + y^{\frac{3}{2}} = 5 \]

(e)
\[y = x \arcsin(x) \]

(f)
\[y = x^x \]

2. (5 points) Compute the equation of line tangent to the curve \(f(x) = \sqrt{x} \) at \(x = 9 \).

3. (5 points) Compute the equation of the line tangent to the circle \(x^2 + y^2 = 25 \) at the point \((3, 4) \).

4. (10 points) A large coffee cone 10 centimeters in radius and 15 centimeters tall drips coffee at a rate of 2 cubic centimeters per second. How fast is the height of the coffee dropping when the height is 3 centimeters?
The volume of a cone is \(V = \frac{\pi}{3}r^2h \) where \(r \) denotes the radius and \(h \) denotes the height.

5. (10 points) Two cars diverge from an intersection in the middle of Kansas. The car headed east travels at 35 miles per hour; the car headed south travels at 40 miles per hour. How fast is the distance between them increasing after 20 minutes (1/3 of an hour)?

6. (10 points) Determine the maximal and minimal values for the function \(f(\theta) = \cos(\theta) + \sin(\theta) \) over the interval \([0, 2\pi]\). For which angles \(\theta \) do these optima occur?

7. (10 points) Determine the \(x \)-coordinates and the optimal values (maximum and minimum) for the function \(f(x) = 3x^2 + 2x - 5 \) on the interval \([-1, 3]\).

8. (10 points) Sketch the graph of the function
\[
f(x) = \frac{(x + 1)}{(x - 2)}.
\]

9. (10 points) Sketch the graph of the function
\[
f(x) = (x + 2)(x + 1)(x - 2).
\]