1. Let X denote a set. Let $\mathcal{P}(X) = \{A \subset X\}$. Suppose that $\mathcal{T} \subset \mathcal{P}(X)$. Define the term \mathcal{T} is a topology on X.

2. In case X is finite, say X has n elements. Indicate why $\mathcal{P}(X)$ has 2^n elements.

3. Suppose that X is infinite. Let $\mathcal{T} = \{A \subset X| X \setminus A \text{ is finite}\}$. Here $X \setminus A = \{x \in X| x \notin A\}$. Show that \mathcal{T} is a topology on X. (If you have trouble with this because you could not solve #1, please ask for the definition.)

4. Suppose (X, \mathcal{T}) and (Y, \mathcal{V}) are topological spaces and $Y \xrightarrow{f} X$ denotes a function. Define f is continuous on X.

5. Describe the open sets in the usual topology on the real line \mathbb{R}. This is the topology induced by the metric $d(x, y) = |y - x|$ on \mathbb{R}.

6. Consider the identity function on \mathbb{R}. Also consider the usual and finite complement topology (problem #3). The identity function is continuous in one direction. Which one?

7. Let X denote a set; and $A \mapsto \overline{A}$ a function from $\mathcal{P}(X)$ to $\mathcal{P}(X)$ such that

 (a) $\emptyset = \emptyset$;
 (b) $A \subset \overline{A}$;
 (c) $\overline{\overline{A}} = \overline{A}$;
 (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

 Show that $\mathcal{T} = \{X \setminus \overline{A}| A \in \mathcal{P}(X)\}$ is a topology on X.

1