1. Recall that the usual topology on \mathbb{R}^n has as a basis the set of open balls

$$B_\epsilon(\bar{x}) = \left\{ \bar{y} \in \mathbb{R}^n : \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2} < \epsilon \right\}$$

where $\epsilon > 0$ and $\bar{x} = (x_1, x_2, \ldots, x_n)$ ranges over all points in \mathbb{R}^n.

In \mathbb{R}^2 consider the set

$$D_\delta(\bar{x}) = \left\{ \bar{y} \in \mathbb{R}^2 : \sum_{i=1}^{n} |y_i - x_i| < \delta \right\}.$$

(a) Show $D_\delta(\bar{x})$ is open in the usual topology for \mathbb{R}^2.

(b) Let \mathcal{D} denote the topology with basis

$$\{D_\delta(\bar{x}) : \delta > 0 \ & \bar{x} \in \mathbb{R}^2\}.$$

Show $B_\epsilon(\bar{x})$ is open in \mathcal{D}.

2. Consider

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \ & \ y \neq 0\}$$

as a subset of \mathbb{R}^2 in the usual topology.

(a) Is the set connected? Prove your assertion.

(b) Is $\mathbb{R}^2 \setminus S$ connected?

(c) Is S open in \mathbb{R}^2? Prove your assertion.

(d) Describe the closure of S.

3. Consider \mathcal{C} to be the Cantor set as a subset of \mathbb{R}, and consider $\mathbb{Q} \cap [0,1]$ — the set of rational numbers in the unit interval.

(a) Is \mathcal{C} closed?

(b) Is $\mathbb{Q} \cap [0,1]$ closed?

(c) Is $\mathbb{Q} \cap [0,1]$ discrete?

(d) Is \mathcal{C} discrete?

(e) Are either \mathcal{C} or $\mathbb{Q} \cap [0,1]$ connected?

(f) Are \mathcal{C} and $\mathbb{Q} \cap [0,1]$ homeomorphic?

Justify your answers.