The Binomial Theorem expresses the nth power of the sum, $A+B$, as the sum over all binary sequences of As and Bs. The power of the sum is the hyper-volume of the hypercube whose edge length is $A+B$. The binary sequence summands are each the hyper-volume of a hypercube whose edge lengths are some choice of As and Bs. Pascal’s triangle tells us how many terms of each type.

The Binomial Theorem

\[(A+B)^n = \sum_{k=0}^{n} \binom{n}{k} A^k B^{n-k}\]

where $\binom{n}{k}$ is the kth entry in the nth row of Pascal’s triangle.
Analogous phenomena occur in all dimensions. The blue tetrahedron on the right is the smallest convex set that contains the four points \((1,1,1,0), (1,1,0,1), (0,1,1,1), \) and \((0,0,0,1)\). The red cone intersects these two tetrahedra in green solids. On the left is an object that has 2-dimensional faces which are kites and together form a cube-like object. On the right, four triangular faces form a tetrahedron. Either of these figures can be rotated and reflected, thereby forming a red tetrahedron. Under such rigid motions, the cubical base of the red tetrahedron rotates to \((x,y,1,w)\) then to \((x,1,z,w)\) and finally to \((1,y,w)\). Meanwhile, the resulting face copies of the 4-dimensional pyramid fill the 4-cube. Thus the original cone occupies a quarter of the space in the 4-cube. Therefore, the sum of the volumes of cubes whose edge lengths range from 0 to 1 is \(1/4\). Analogous phenomena occur in all dimensions.