Name ________________________________

Give the ϵ-δ definition of a limit. That is define precisely what is meant by the sentence,

\[\lim_{x \to c} f(x) = L. \]

Solution: We say that $\lim_{x \to c} f(x) = L$ if and only if for every $\epsilon > 0$ there is a $\delta > 0$ such that

\[|f(x) - L| < \epsilon \]

provided

\[|x - c| < \delta. \]

In more symbols, $\lim_{x \to c} f(x) = L$ if and only if $\forall \epsilon > 0$, $\exists \delta > 0$ such that

\[|f(x) - L| < \epsilon \]

provided

\[|x - c| < \delta. \]