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Preface

On November 4, 2008, I finished drawing the figure that is labeled red
# 28. It was about 9:30 in the evening, and this was the last of the
illustrations on the red side of the eversion that I would have to do.
All the red and blue drawings had rough drafts that were complete,
but that one drawing was missing. Even though the transition from
red # 27 to blue # 53 was obvious to me, I was dissatisfied that there
is not a flat tetrahedron in red # 27. So I drew one more figure on
the red side.

Shortly after the drawing was complete, the election results were
announced. Barack Obama had secured enough electoral votes to win
the 2008 presidential election. The news media have adopted the con-
vention that “red states” vote predominantly Republican and “blue
states” vote predominantly democratic. The country had turned from
red to blue, and I just finished the last red drawing. I was amused.

Of course, my color choices were arbitrary. It would be more
precise to say that I turned a magenta sphere to cyan, or if you like,
the entire process can be reversed, and the cyan sphere is converted
to being magenta. One could change a few parameters within the
file that defines the manuscript and turn a yellow sphere green. The
choice of color is not as important as the result of the process. A 2-
dimensional sphere can be turned inside out via a process that allows
the sphere to pass through itself, but that keeps tangencies intact.

That result is over 50 years old. It gives rise to some of the most
complicated yet beautiful examples in modern topology. Even the
statement seems peculiar: I will have to describe planes of tangency;
I will have to describe how tangent planes can become singular; and I
will have to explain the precise nature of the sets on which the sphere
intersects. Please be patient. There are several key ideas to be de-
veloped: surface, sphere, tangent planes, singularities of maps, cusps,
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folds, and intersection points are among the main ones. Fortunately,
all of these ideas can be seen within the world of experience.

Thus, this book is my attempt to explain this example to a lay-
public. The example is chosen because of its intrinsic beauty. My
version of the sphere eversion builds on the work of others — princi-
pally upon the sphere eversion of Froisart and Morin. As I develop
the narrative below, I will try to motivate the process and explain
the key steps in this construction. Within this preface, I will give an
overview of the process.

As I write this, I imagine you to be a college student beginning
a pursuit of mathematics or science. You might also be a practic-
ing scientist, computer scientist, or engineer who always appreciates
mathematics but did not study it beyond the level of calculus. I
imagine you to be curious and to be invigorated by mathematical
and scientific imagery. Your interest in mathematics might be akin
to my own interest in biology or chemistry. You have an apprecia-
tion for the aesthetic of the subject but you have not acquired the
technical expertise to be a practitioner.

The measure of the success of this book is how it affects you.
Will you learn something in the process of reading it? Will you learn
something in the process of looking at the pictures? Will you examine
the pictures in details, and determine how they are related? If you
have never learned calculus, will this example help you understand
the key concept of critical behavoir? If you have learned calculus,
will you say, “Oh, yeah, I remember that idea?” Will you dust off the
calculus book, and look for deeper meaning? Even if the answer to
all of these questions is, “No,” the book is a success if you come to a
greater appreciation of mathematics. Such is my hope.

As a student, I read the works of Gamow, Martin Gardener, and
popular writings of Einstein. As an adult, I often read the popular
writings of current physicists. As a professional mathematician, my
desire is to create similar works for the lay-public that explains the
portions of mathematics that I understand well.



vi

My immediate tasks are to explain: (a) how the eversion of this
book differs from the elegant eversions that already exist; (b) why
you should be interested in fully understanding this eversion; (c) the
fundamental idea behind this eversion and how I recognized within
the process that I made progress.

In regards to the first item, the elegance of the Thurston-Thurston
eversion “outside-in” has never been in doubt. It contains the belt
trick as an organizing principle. Within the text below, I will give
a synopsis of that idea. The Froisart-Morin eversions, the mini-max
eversions, and the tobacco-pouch eversions are all beautiful and con-
cise. Their concision is due in no small part to the fact that they are
described by a red-blue symmetry. The eversion of this book is no-
ticeably asymmetric. The problem in the symmetric pictures is that
at the central moment, the figure is often singular.

Let me me give you a metaphor. Perform an experiment with
two different objects: a coin and a round potato chip (crisp to the
British reader). The chip that I imagine is sold in a can. Hold the
coin in your hand with its edge vertical, so that you see the head
of the coin. Now slowly turn the coin to tails. In an intermediate
stage the coin faced you edge-on. At that stage, the circular bound-
ary of the coin appeared to you as a line segment. That stage was
singular: if we conceive of a circle being turned over, then at the sin-
gular stage we do not see a circle but a line segment. The situation
with the coin simulates a process: clockwise oriented circle, clock-
wise oriented ellipse, line segment, counter-clockwise oriented ellipse,
counter-clockwise oriented circle.

The singular event of the line segment can be decomposed into a
less singular situation as follows.

The potato chip does not naturally lie in the plane. It is a saddle
shape. Hold the chip and turn it over slowly. I expect that you will see
that its boundary circle passes to a figure 8 double loop with one eye
of the 8 smaller than the other, the larger loop shrinks until the loops
are even tempered, and finally the larger loop becomes the smaller
to eventually shrink to nothing. Imagine the boundary of the chip
as a 1-dimensional loop. So if the boundary were initially oriented in
a clockwise direction, it would become counter-clockwise. There are
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indeed two singular events in this process: when the figure 8 appears
and subsequently disappears, but these events are more general than
the circle vanishing into a segment and reappearing over-turned.

The classical eversions are singular in the sense that the turning
of the coin is singular. The turning of the chip is less singular. There
is more detail that can be gleaned from the shadow of that event than
the shadow of the overturned coin. The eversion that I present here
is virtually as non-singular as it can be made. Furthermore, at each
stage of the eversion I have cut the sphere into slices; that is, I have
described each stage as a movie. And successive stages are related
via moves-to-movies. Therefore a diligent analysis of the diagrams
decomposes the steps into understandable small pieces. This is the
main virtue of my approach: each step can be understood to be built
from atomic pieces.

Consider an algebraic computation. We all have some personal
level of algebraic (in)tolerance. One person may look at an equation,
and process the solution through a series of mental steps. From the
point of view of one who is less algebraically skilled, the first person’s
computation seems miraculous. In fact, the experienced algebraist
may be able to process a sequence of successive steps quickly, whereas
the novice needs to see each step written down in order to process it.

In the face of an algebraic computation, I am often the second
person. I usually need to see each line of algebraic manipulation
worked out explicitly. My algebraic colleagues do not often show me
patience. On the other hand, I have trained my own mind to be able
to do geometric computations quickly. And those same algebraic col-
leagues who did not show me patience can be exasperating when they
do not see the geometric steps that connect one picture to another.
The master of one art often is the novice in another.

The illustrations of the sphere eversion that are presented here
are the step-by-step geometric computations that are skipped over or
are conglomerated in a computer animation. Clearly, if the computer
can perform the computation, as in the case of outside-in or mini-
max, then the idea must be simple even if the implementation (which
requires the computer) is complicated. The result seems miraculous,
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and we are often overwhelmed by the force of the computer calcula-
tion. But the eversion of this book did not use the computer in an
essential way. That is not to say that the idea is particularly compli-
cated — quite the opposite. It is designed to illustrate the steps that
are often hidden within the classical eversions. No detail is obscured;
the difference between successive events is always explicit.

There is a deeper meaning within the calculations. The geomet-
ric calculations that are being performed are a geometric encoding of
some algebraic calculations. The algebraic notation for those calcula-
tions is cumbersome and replete with complication. When translated
into diagrams, the algebraic relations appear to be kinematic. Be-
cause the diagrams appear to dance on the page when an algebraic
identity is translated into geometry, the subject has been dubbed
“higher dimensional algebra.” The diagrams of the eversion are re-
lationships in that algebraic system, and successive spheres that are
illustrated differ by identities among these relationships.

Higher dimensional algebra is an active branch of mathematical
research that hopes to relate both to the current state of affairs in
physical theories and to help solidify and unify many branches of
mathematics. In a nutshell, the underlying principle of higher dimen-
sional algebra is to stop declaring two different things to be equal
when what you mean is that there is a natural equivalence between
them. Equality is a strict rule: it means that one thing is another
— a peculiar declaration indeed. But two things are different, so we
should compare them, study their differences, and study further the
relationships that set them apart or that make them appear to be the
same.

A sphere that is red on the outside and blue on the inside is
different than one of the opposite colors. An eversion studies how
they are related. We can even ask if the eversion here is in substan-
tially different than the other eversions. To answer that question,
one needs to have measurements — quantifiable aspects — that can
distinguish them. In higher dimensional algebra, we compare the dif-
ferences between the aspects that measure differences. In Chapter 10,
I will discuss aspects of higher dimensional algebra through a physical
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metaphor. That metaphor is not terribly far from various mathemat-
ical models of particle interactions. In fact it is a “baby-model” of
particle physics — one that can be used to provide a new language
in which the problem of physics (a unification of gravity and quan-
tum mechanics) might be addressed. The subject is way too young
to solve this issue, but throughout history, mathematical abstraction
has lent itself to addressing problems for which it was not originally
intended. And once the abstract had been established, differing areas
of mathematics could be used to explain the new abstractions.

There is a fundamental idea that I used in completing this ever-
sion. The double points, triple points, the fold lines, and the quadru-
ple point all interact. At each stage, their interrelations are tracked.
For example, the quadruple point separates the red and blue side of
the eversion. On the red side, I worked to create a quadruple point.
I followed some animations of the Froisart-Morin eversion, but my
method never completely coincides with the Froisart-Morin. Near
the quadruple point, there must be four triple points, and they must
form the vertices of a tetrahedron whose edges are double points; the
double point arcs must be the edges of some triangles. The surface
is moved into that configuration. Following the quadruple point, it
is very easy to cancel one pair of triple points. The remaining pair
need to be repositioned. And that repositioning is caused by affect-
ing the fold set, and essentially twisting one end of the immersion a
full 360 degrees. On the blue side you will see the top half slowly
un-twisting until the triple points can be joined by a triple of arcs of
double points.

One can think of an eversion as a type of “quebra-cabaça:” that is
a puzzle made of flexible and non-flexible pieces in which some piece
is to be apparently unlinked from the main frame. The trick of the
toy is to know the correct sequence of hand motions to link or unlink
the puzzle. It is usually clear when the puzzle is taken apart and
when it is put together. In the eversion, that clarity occurs precisely
at the quadruple point. Before the quadruple point, the sphere is red.
After it is blue. But just as the puzzle may be solved in a single step,
un-solving it can be remarkably tricky. In the eversion of this book,
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not enough twisting occurred on the red side, so extra twisting has
to occur on the blue side.

Nevertheless, progress is measured when the relationships among
the fold lines and the double points are configured correctly. In my
own solution of the puzzle, I looked alternatively at the chart, the
movie, and the decker-set. I looked for moves that could be made,
and that put the double points into a more desirable configuration.
It is difficult to explain the idea further without delving into the
eversion. We will do that shortly.

First acknowledgement are due, and second I will leisurely de-
scribe surface, fold, intersections, and relations among interactions.

This book was funded by the National Science Foundation as part
of a research grant. American taxpayers bought my university this
computer and the software that I used to draw the pictures. You have
paid for me to discuss this work at conferences. I spent much of my
professional time and home life over the past two or three years in
the production of this book. Thank you.

Many people deserve more thanks than I can adequately give
them. Nonetheless let me try. On a professional level, Masahico
Saito, Joachim Rieger, and I developed the mathematical theory of
movie moves that are used here. Masahico deserves extra-credit for
his patience. Student Sarah Gelginser suffered through a disorga-
nized stack of rough sketches that outlined the eversion here. My
colleagues at the University of South Alabama witnessed the eversion
illustrations in their nascent form. I am often insufferably proud of
my achievements. They were tolerant. Dr. Cynthia Schneider care-
fully proof-read a preliminary draft and urged some language changes;
many of these were implemented.

My family often looked at the back of my head as I typed or drew
the pictures in the corner of the living room. I don’t think I neglected
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them too much over this period, but only their future therapists will
be able to confirm that. So thank you to my wife, Huong, and three
sons, Albert, Alexander, and Sean. They too witnessed the over-
abundance of pride that I am prone to display.

I think that I did most of my daily chores while writing this, but
as a writer who sees the steps needed to complete a work, I caution
future writers. To complete a book takes long term dedication. One
has to reserve blocks of time each and every day. Some other aspects
of your life may have to give way. I hope the reader and the causal
viewer will see the effort that I brought to the book. Still it is better
than digging ditches.

My hope is that the energy and effort that I have given to de-
veloping this book will be repaid by the readers’ enthusiasms for the
subject. Let us begin.





Contents

Preface

Chapter 1. A Sphere 1

Chapter 2. Surfaces, Folds, and Cusps 5

Chapter 3. The Inside and Outside 7

Chapter 4. Dimensions 9

The Human Dimension 13

Chapter 5. Immersed Surfaces 23

Chapter 6. Movies 31

Double Points and Triple Points 39

Critical Exchanges 40

Example 41

Summary 46

Chapter 7. Movie Moves 47

The Evolution in the Intrinsic Sphere 48

The Fold Set 48

Double Points and Triple Points 55

Double Points and Folds 63

xiii



xiv Contents

Triple Points, Double Points, and Folds 71

Conclusion 75

Chapter 8. Taxonomic Summary 77

Chapter 9. How Not to Turn the Sphere Inside-out 83

Chapter 10. A Physical Metaphor 89

Gauss-Morse Codes 93

Summary 94

Chapter 11. Sarah’s Thesis 97

Chapter 12. The Eversion 103

Chapter 13. The Double Point and Fold Surfaces 269

Conclusion 275

Bibliography 277

Index 279



Chapter 1

A Sphere

A sphere is a 2-dimensional surface. Neglecting subterranean caves
and high-rise apartment buildings, you or I could locate the other
on this earth by giving the other a pair of numbers: longitude and
latitude. I am writing this from (30◦41′10′′N , 88◦10′59′′W ); thus you
can discern that I am writing from Mobile, Alabama a small southern
city located close to the Gulf of Mexico.

The unit sphere is a subset of a three dimensional coordinate
space that consists of the solutions, (x, y, z), to the equation

x2 + y2 + z2 = 1.

It is perfectly round, encompasses a center at the point (0, 0, 0) (known
as the origin in space), and has a radius of 1. Each of its points is
exactly 1 unit away from the origin. It is smooth, polished, perfect,
and perfectly thin, more thin than the bubble of soap film that was
blown a few moments ago and now is about to dry and vanish.

We adore spheres. The gaseous planets, Jupiter, Neptune, and
Saturn (stripped of its rings) are gigantic gods once devoured by
Chronos like so many Skittles eaten as you pass the candy counter.
The third aisle in the super-market houses a basket of colorful mar-
bled play toys — one dollar each, two dollars for the large ones —
screams of joy upon receipt, screams of sorrow upon denial. How fra-
grant and delicious are those oranges, packed with sticky juices that

1
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dribble from your chin. The tennis ball, the soccer ball, the basket-
ball, each gives freedom. “Go outside and play!” Hit the sphere with
a stick. Bounce it on the ground. Listen to its impact as it rebounds
from the wooden floor in a ball/bell timbre reverberating from the
rafters. Spheres numbered 1 through 15 arranged triangularly on
green felt table scatter and rebound in perfectly inelastic collisions
when smacked by the slightly larger white cue.

But we misapprehend them too. For by sphere, I mean that
infinitesimally thin layer that encompasses the material within. Nei-
ther sun nor moon is as round, smooth, or homogenous as the unit
sphere defined by the quadratic equation x2 + y2 + z2 = 1. The sun,
neither solid nor liquid, erupts in a violent cataclysm. Flames ex-
tend into space, magnetic winds blow and break the signal of urgent
phone calls. The man in the moon manifests the intricate topogra-
phy of a dry, gray, inhospitable world. A sphere separates space into
two pieces: that which is inside the sphere and that which is outside.
Within the space of 3-dimensional coordinates, the inside and outside
are different. The former is bounded and the latter is endless.

Each point, (A,B,C), of the unit sphere engenders a plane, Ax+
By+Cz = 1, that touches the sphere at exactly that point: a tangent
plane. A radial ray emanating from the center of the sphere through
the point pierces the sphere and the tangent plane at that point.
The ray lies perpendicular to the tangent plane as a spindle with
a cash register receipt affixed. The tangent plane approximates the
sphere in a neighborhood of the tangency to an extraordinary degree
of accuracy. Your play toy lies sullen and still, tangent to a wooden
floor which, in its turn, approximates the surface of the earth. The
collection of tangent planes manifests the 2-dimensional nature of
the sphere. We attempt to flatten our own world by paving it, or
pouring concrete foundations for our houses. There is a stability in
Euclidean geometry: straight lines, flat planes, right angles, and
triangular support. These flat things approximate our world as the
tangent plane approximates the sphere. When we look closely at the
spheres of our lives, we ignore their topography and idealize them in
neighborhoods of points by their tangent planes.
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Let us sit across the table eye-to-eye and hold an orange between
us. We both see an orange disk. The light reflects and suggests a
spherical shape, but on a cloudy day, we may not see that reflection.
The orange may appear to each of us as a drably orange disk like
the sun partially obscured by clouds. No matter how you rotate the
orange, you and I still see a disk. Most of what I see is hidden to you,
most of what you see is hidden to me. But there is a feature common
to both of our viewpoints: that circle that forms the profile of the
orange.

It is the same circle that delineates the sun in the sky or the full
moon on a cloudless night. These orbs, the orange between us, and
the toy on the floor all have a circle that encompasses their profile.
The profile-defining circle of the orange is the set upon which the
tangent planes lie perpendicular to both of our fields of view. I do
not see the planes tangent to your side of the orange and you do not
see mine. The object between us obscures them. Yet your tangent
planes are projected to the same points of my retina as mine are, and
vice versa. Except at the delineating profile, two points are projected
to one, and the tangency approximates our views.





Chapter 2

Surfaces, Folds, and
Cusps

When you or I look at any surface, we see it in profile. The profile
delineates the surface from its surrounding. The profile is the line on
which the tangents are turned away from the eye. Take this page,
and turn the book so the page appears as a line. You see no print,
you read no words, you see no page. The page is a plane of tangency
to its own surface. The edge of the page is a rectangle, the set which
delineates the page. I look down upon my shadow. The shadow is a
projection of my body on the floor. It is defined by its profile.

I look down at my fingers as I pause from typing. The upper
profile of my index finger obscures the lower profile of my middle
finger, and the middle finger does the same to the ring finger which
completely obscures my baby finger. My hand is poised and ready to
continue typing. There is a cusp at the junction of the index finger,
and I can imagine the line at the knuckle curving below and extending
to the lower profile of the next finger.

Venus’s statue stands poised on a mantle to my right. I stand to
look down upon it from the front. The two folds that outline each
breast form a pair of arcs. Each arc appears to end in a pair of cusps,
but the folds do not truly end; they continue below the breast and
beyond my point of view. Those invisible folds attach her breasts to

5
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her body. Most of the folds of our own bodies remain unseen: the
fold behind your knee, the crease of your elbow, or the side of your
nose as your face is turned. The visual appeal of a human form is
accentuated by its cusps and folds. The artist uses these cusps and
fold to sketch a form.

The lines that form the shape of the body are the lines upon which
the planes tangent to the surface vanish when we look. Mathematical
forms are idealized from the lines. The artist, aware of these lines,
does not draw where one imagines them to go. The lines below the
cusps hide.

When a surface is projected in a usual way to a plane, most
points of the surface have neighborhoods which are simulated by their
tangent planes. Some points form folds: the points at which the
tangent plane projects singularly to the field of vision. The folds
form a 1-dimensional set that consists of arcs that end in cusps or
folds that form closed curves. Each cusp is a point at which the
tangent plane degenerates to a point upon projection, but the cusp
itself has folds emanating from it: one unobstructed from the field of
vision, and the other hidden by the remaining surface. The surface,
thus projected, is not folded. That Venus is certainly not flat, nor is
my dress shirt destroyed when it is ironed; the crease in the sleeve is
an artifact of projection of the field of view.



Chapter 3

The Inside and Outside

But we are talking about spheres, and one family of spheres is the
subject of this book. So let the discussion return to the unit sphere in
space. This point set {(x, y, z) : x2 +y2 +z2 = 1} separates space into
two pieces, an inside and an outside. And the surface of the sphere
is also two sided. (Not every surface that we encounter in this book
is two-sided, but that story comes later.) Let us paint the outside
of the sphere red and the inside blue. No wait, paint has thickness
and our unit sphere is no longer an image of perfection with a pair
of thick latex coats upon it. Since the sphere is mathematical, we
can pigment the sphere on its two sides: outside red, inside blue, and
consider those pigments to be as idealized as the sphere itself.

This book has one purpose: to turn the sphere inside-out in such
a way that during the process, every point has a neighborhood which
is approximated by a plane tangent at that point and that tangent
plane can be thought of as a small flat surface in space. The tangent
plane never degenerates to a line or to a point. I will say that under
these circumstances, the tangents remain intact: each point on the
surface could be covered by a small piece of paper that is neither
folded nor wadded into a ball.

However, in the process we look carefully at the folds of its projec-
tion. The stone Venus on the mantle appears to have folds when I look
at it, yet its tangent planes are intact. The folds in the drawings of

7



8 3. The Inside and Outside

this book are artifacts of looking, or more precisely, they are artifacts
of the drawing. Throughout the process the drawings are stylized,
and there is some caricature. Even though the tangents are intact,
the sphere, being infinitesimally thin, may pass through itself. The
entire process is codified by means of the self-intersections and the
folds. The fold set of the process forms a 2-dimensional surface (with
seams). The double point set of the process forms a 2-dimensional
surface. The triple point set is a single closed curve that intersects
itself at a quadruple point. The interactions among these sets make
the process interesting. The interactions among these sets contain
the mathematical content of this work. I analyze these as invariant
quantities of the sphere’s evolution.



Chapter 4

Dimensions

The process of turning a sphere inside-out while keeping its tangent
planes intact is called a sphere eversion. This process involves many
dimensions, including a human dimension, which is the subject of the
next section. This section is a playbill that describes the cast of char-
acters, the actors who portray them, and previous work experience.
These principle characters are the subject of the eversion, not the real
people whom I mention in the sequel. By the end of the section, you
may be dizzied in trying to keep track of each. In Chapter 8 there
are synopses and reference tables. You may, during one of the inter-
missions, refer back here and refresh your memory. Also, the sets in
question are drawn from several points of view and it is clear within
the context of the pictures which set is which.

The sphere itself is 2-dimensional. The eversion is parameterized
by time. At time t = 0, the sphere is a red sphere in 3-dimensional
space. At time t = 1, it is a blue sphere inside 3-dimensional space.
At each intermediate time, the surface of the sphere is bent, intersects
itself, but its tangent planes remain intact: at each instant of time
during the process, and for every point on the sphere, there is a
neighborhood of the point for which the plane tangent to the sphere
at the point approximates the image of the sphere; furthermore each
tangent plane fits flatly into space as if it were the floor, ceiling or
wall of a (tilted) room. The eversion represents a thickening of the

9
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infinitesimal sphere to a three dimensional object that has two spacial
dimensions and one temporal dimension.

The red/blue sphere moves within a 3-dimensional space, and the
time-elapsed version occurs in a 4-dimensional space-time. Despite
popular accounts, not every 4-dimensional space is a space-time. For
convenience, the process of eversion is considered to occur in such
a space-time. But a mathematically sophisticated observer sees the
process within a single hyper-solid 4-dimensional space. This section
begins the descriptions therein.

You watch the sphere move. Each page of illustrations represents
a photograph of that motion. These pages are the stills in an ordinary
movie. Thus at each time, the sphere that sits in space between you
and the page is projected to the plane of the page.

The folds and cusps of some ordinary objects that are within my
field of view such as a hand, a shadow, and a statue are described in
Chapter 2. A sphere is an ordinary object, too. But its image during
this deformation transcends an easy description. Rather, mathemati-
cal language, as the language of formulas and functions, gives precise
descriptions that quantify the language of illustration. Here illustra-
tion will suffice since information is delivered from several different
points of view.

Consider the 3-dimensional space consisting of the images on the
pages in the book. Each page describes the 2-dimensional projection
of a 3-dimensional slice of a 4-dimensional process. The illustrations
were prepared using a combination of cyan, magenta, yellow, and
black pigments. The precise quantity of each type of ink in each
illustration represents a point in a 4-dimensional color space projected
onto the page. And yet again, the inks undergo a process as the pages
are turned.
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The projection of the picture to the page illustrates the structure
by means of the sets of folds. These are line segments and circles illus-
trated by thick blue or red lines. As these folds pass into the interior
of the sphere, they are depicted in ever-fading thicknesses and degrees
of transparency — yet other dimensions. Remember the fold lines are
the segments along which the tangent planes become perpendicular
to your line of sight. As they evolve in time, they sweep out surface.
The surface of the folds evolving has seams that are formed by the
cusps evolving. The surface of folds is sewn together along the seams
of cusps, and so the fold surface envelopes the evolution of projection.

At many stages of the process, the sphere intersects itself. The
tangent planes at intersection points usually intersect as any two non-
parallel planes would in space. Look at the corner of the wall in the
room in which you are sitting. See the line segment of intersection be-
tween the south wall and the west wall. Imagine both walls extending
beyond this corner. The intersection between the metaphorical planes
is a line, and the planes themselves extend beyond your field of view.
So the set of double points at any time form another 1-dimensional
set. The collection of these as time moves forward forms another 2-
dimensional surface. This surface is one of the most interesting ones
encountered during the process. It is non-orientable or one-sided in
the sense that there is a Möbius band within.

Also, the sphere may intersect itself as the south wall, east wall,
and floor intersect at a single point. Such triple points stand isolated
and therefore are 0-dimensional at any given time. But a point evolv-
ing in time forms an arc in space-time. So the triple point set of
the process forms a 1-dimensional set. No triple points appear when
the sphere is homogeneously red, nor when it is blue. So the triple
point set, as a 1-dimensional set, forms a collection of circles in the
interior of the process. In fact, it is only one circle, and at precisely
one moment it intersects itself at a quadruple point of the eversion.

The quadruple point is the most critical of them all. At all times
before this, the sphere can be pushed back to the red sphere without
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passing a quadruple point. Afterwards, the sphere must evolve to the
blue side if it is to move away from the quadruple point.

The eversion presented here is quite a bit different from all of
its predecessors in that its red side and blue side are not symmet-
ric. In this sense, to complete this eversion, many more sketches
were needed than in the predecessors. Even more strange is the fact
that the blue profile does not appear for quite some time beyond the
quadruple point. The process has some flexibility. Some critical areas
can interchange their positions without damaging the process. But
the manufacture of this eversion was quite labor intensive, and it took
me and my collaborator, Sarah Gelsinger, quite some time to make
sure every stage was complete. In fact, each drawing is a computa-
tion. One does not understand the complete computation until every
individual calculation is complete, and one does not know which steps
can be avoided until all the drawings are finished. An implicit invita-
tion beckons: make the process as simple as possible while retaining
the property of the singularities being isolated.

Each projection to the page can be sliced by a sequence of 2-
dimensional planes. Each slice intersects the surface of the sphere
in some simple closed curves (usually only one). These are circles
in the plane that intersect themselves. The changes in circles give
an alternative time direction. So the sphere eversion process can
be thought of as a move to movies, and the dimensional metaphor
changes from 3-spacial plus 1-temporal, to 2-spacial plus 2-temporal
dimensions.

The distinction between spacial and temporal dimensions is a fic-
tionalization. Since we are in the habit of thinking that the world is
3-dimensional and time is a 4th dimension, it is convenient to conceive
of a process in 3-dimensions as a subset of 4-dimensional space. In
the sphere eversion process, there is one preferred time direction: that
which distinguishes red from blue. But at nearly each moment of that
process, the sphere intersects itself, and that which faces us, occludes
other facets of the surface. So to view the interior of the process, a
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height function is chosen in space, and a sequence of planes perpen-
dicular to the height direction are chosen to intersect the sphere at
that moment. The intersection of the sphere with these planes forms
the self-intersecting circles. As the sphere changes from bottom to
top, that processes is considered as being dynamic and therefore also
temporal.

There are further illustrations. To indicate how each temporal
slice of the process is mapped into 3-dimensional space, a set of in-
structions is drawn as abstract 1-dimensional sets on a sequence of
spheres. Three separate 1-dimensional sets are given at each time:
the blue and red fold sets and the pre-image of the double points.

In due time, each set — fold, cusp, double point, triple point,
pre-image (known as the decker set) — and critical points thereupon
are discussed in turn. For most of us, people are more interesting
than sets, so let us first look upon the characters who made the story
possible.

The Human Dimension

This is the story of sphere eversions since 1958. Nearly every per-
son in this drama was contacted for commentary. The efforts to get
at the truth, or at least a more interesting fictionalization peppered
with personal stories, met with naught. Only a bit of minutia was
uncovered in the correspondences. Nearly everyone involved is still
living, and if I don’t have the story exactly right, it is not because I
didn’t try. I am tempted to embellish the next few paragraphs just
to get a reaction from the principals. Instead, I’ll tell the story as
it was told to me, as I have read the story on the internet, and as I
remember it being told during various lunches and conferences. Any
embellishments or half-truths are the responsibility of the lunch time
stories, and I won’t reveal those sources.

About fifty years ago, Steve Smale [8] proved the remarkable fact
that the sphere could be turned inside-out without tearing or folding
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but allowing it to pass through itself. Raoul Bott was Smale’s PhD
advisor at the University of Michigan. It is told that Bott, upon
hearing Smale’s general result, examined its consequences in terms of
the sphere and pronounced the result wrong because it was obvious to
him that you can’t turn the sphere inside-out without introducing a
circle at which the tangent planes become singular. Smale persisted,
convinced Bott, and earned his PhD. Smale went on to prove the high
dimensional Poincaré conjecture and earn a Field’s Medal. Since then
many marvelous examples of sphere eversions in a variety of media
have been given.

The story about Bott is also told about the referee of the original
paper. It is rare that a paper’s referee is the PhD advisor of the
author. The story, then, has some apocryphal characteristics, so it
entertains. “Your theorem can’t be right! If it were, you could turn
a sphere inside-out while preserving tangencies.”

“My theorem is right, and I can turn the sphere inside-out.”

Sphere eversions are thought to be impossible by the uninitiated
since circle eversions are demonstrably impossible.

Some say Smale’s proof of the eversion is only existential: His
proof shows you that it can be done, not how to do it. Smale denies
this. Smale’s calculation is related to the way a certain loop in a
space of transformations of 3-dimensional space can be contracted.
One can trace through a variety of abstract spaces and functions
between them and reconstruct an eversion. In particular, one of the
more recent sphere eversions, that illustrated in Outside-In [10], uses
the idea of “loop contractions” to give the computer animation. So
maybe Smale’s denial is vindicated.

The late Arnold Shapiro, who had a reputation of being partic-
ularly opaque with his explanations, described to Bernard Morin an
idea to turn the sphere inside-out. Apparently, Morin did under-
stand Shapiro’s construction, because Morin and, subsequently, Mar-
cel Froissart developed one of the more enduring examples of sphere
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eversions. Because of this construction, Bernard Morin was chris-
tened the “great geometric visualizer.” Morin is the “great geometric
visualizer” just as James Brown is the “godfather of soul.” Bernard
Morin happens to be blind.

Shapiro’s construction involved an early 20th century idea that
was due to Werner Boy who was the only student of David Hilbert
to study geometry. Boy gave an example of a Möbius band whose
boundary fit nicely on the surface of a sphere even though the Möbius
band intersected itself thrice. The important feature of the Möbius
band is that its tangencies are always (locally) embedded. Appar-
ently, Shapiro’s instructions were to paint the Möbius band as the
intermediate stage. My own reputation for clarity (if I have one) is
destroyed without the following detail.

A model of a Möbius band is often made from the margin of
an ordinary piece of notebook paper. Cut the paper along the red
line that defines the outer margin. Put a half-twist into the paper,
and tape the ends together. In this way, the center of the Möbius
band has circumference 8.5 inches. If by mistake two sheets of paper
(temporarily stuck together) were cut, twisted, and taped together,
then instead of a Möbius band a paper gasket that had a full twist
would have been made. With two sheets of paper, there are a total of
four edges that are taped together, and two pieces of tape are needed.
The paper gasket is analogous to a gentleman’s belt that has been
buckled even though it has a full twist in it.

Mathematicians say that the Möbius band is covered in a 2-to-1
fashion by the twisted gasket. The two strips of paper, when taped,
appear to be a Möbius band until they are unravelled. We also do not
distinguish between a gasket or a cylinder; we call either an annulus.
An annulus is the region that surrounds a (1-dimensional) circle in
the plane. The circle can be represented by the equation x2 + y2 = 1
in the plane, and an annulus is represented by the inequalities 1

2 ≤
x2 + y2 ≤ 2. A model of the annulus can also be obtained by cutting
a hole into a paper plate, or by removing the bottom of a paper cup.
The tropical region of the earth represents an annulus.

Boy’s surface allows the Möbius band to intersect itself in a pecu-
liar, but nevertheless a nice way, and the doubly covering annulus can
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be carried through that construction. (To construct Boy’s surface at
this point in the discussion would take us far afield. I have written
about it elsewhere[1]). The boundary of the Möbius band is a single
circle that, under Boy’s construction, lies on a sphere in space and so
bounds a disk on that sphere. The boundary of the double covering
annulus consists of a pair of circles. These lie immediately above and
below the sphere, and each bounds a disk — one in the region above
the sphere and one in the region interior to the sphere. The circle
boundary of the Möbius band that lies on the sphere resembles, to
some extent, one of the two leather pieces that forms the surface of a
baseball.

An annulus with two disks attached forms a sphere. Consider
a paper cup. The bottom of the cup represents one of the disks
attached, and a lid for the cup represents the other. Alternatively,
consider the earth made of a tropical region (that is an annulus) and
polar disks (allow me some latitude to match the latitudes). The
annulus that is mapped into space as a double covering of the Möbius
band via Boy’s construction can be capped off by two disks above and
below the baseball seam on the sphere.

Now, remember that all the mathematical surfaces are infinitesi-
mally thin. The sphere that is formed from the doubly covering an-
nulus can pass through the intermediate Boy’s surface which is “one-
sided.” The sphere passes through the Boy’s surface in a moment of
serendipity and simultaneity. In doing so, it has turned inside-out.

The unfortunate aspect of the preceding paragraphs is that it
describes the easy stage of Shapiro’s idea. Moving a blue or red
sphere into the position at which it double covers Boy’s surface is
much more difficult. I, personally, don’t know how to do this because
there are eight triple points that form the corners of a cube. I just
am not sure how to get an embedded sphere to that position.

Tony Phillips heard about Shapiro’s construction and he indepen-
dently used Boy’s surface in his Scientific American article [7] on the
sphere eversion. Phillips’s article was very influential on a number
of young people, myself included, who were learning that there was
a new type of math out there called topology. It involved stretch-
ing and bending without tearing and it required using techniques
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that until modern times had been unknown. To a child who grew
up learning about the great new world explorers, who was fascinated
with the lunar project, and who was looking for new frontiers, this
mathematical world was full of the promise of excitement. It still
is. Phillips’s article did not use what we now call the movie moves,
but it did illustrate each stage of the eversion by using a sequence of
cross-sections. One commentator says that it is not particularly easy
to see how to get from one stage to another. Someone whom I know
says that the illustrations in the Scientific American article contains
known mistakes.

The current eversion explicates each step in the process by using
a finite set of moves. But it is written in the spirit of Tony Phillips’s
article.

I have been told that Morin calls the eversion (that is closely as-
sociated with him) the Froissart-Morin eversion. My source said that
Morin practically insisted upon this name. It may be an instance
of Arnold’s principle which states that if a mathematical concept is
named for a particular person, then the actual idea was first discov-
ered by someone else. Arnold’s principle is said to apply to itself!

Charles Pugh, then a graduate student at Berkeley, made a col-
lection of chicken-wire models that were hung in a hallway at the
Berkeley Mathematics Department. I recently met someone who re-
members them being there one day and gone the next. These were
models of the Froissart-Morin eversion which depends upon a sym-
metry between the red side and the blue side. Once at the half-way
stage, the model can be rotated in space, and the process reversed.
Nelson Max carefully measured each model and recorded the data.
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He and Tom Banchoff produced an animation based upon these mea-
surements. This early film was an amazing piece of computer anima-
tion/computer art. I don’t think there would be a Toy Story without
this pioneering work.

That the chicken wire models were stolen and lost is a real pity.
In a Circle of Hell, there is a thumbless thief who must reconstruct
them from memory with a pair of blunt wire cutters. The thief com-
pletes them and each night forgets the sequence. His or her hands are
punctured and torn by metal scratches — these wounds do not heal.

George Francis is a fellow who has made much about sphere ever-
sions. He realized that Shapiro’s description and the Froissart-Morin
eversion fit into an infinite family of eversions that he called the to-
bacco pouch eversions. In addition, Francis was one of several people
(e.g. Rob Kusner and John Sullivan) who used an energy functional
to deform Morin’s half-way model to the red embedding and the blue
embedding. This eversion is called the Minimax eversion.

An additional scholar of sphere eversions is François Apéry. Apéry
produced, among other amazing things, a piece-wise linear model for a
sphere eversion. The meaning here is that the sphere is approximated
in a box-like fashion, and each stage is created by functions that not
only have tangencies, but are often modeled by linear functions.

One of the most popular of the sphere eversion animations is the
Outside-in video. The idea for this sphere eversion is attributed to Bill
Thurston. One of his sons, Nathaniel Thurston, wrote a substantial
amount of the computer code for Outside-in. The video was produced
at the Geometry center with the help of a number of other people:
David Ben-Zvi, Silvio Levy, Dell Maxwell, and Tamara Munzner are
the names most frequently mentioned, and a full set of credits can be
found at the end of the film which is available on-line via a Google
search on Outside-In.



The Human Dimension 19

A purple and gold sphere is turned inside-out through a series
of crenelations or corrugations and a parameterization of the belt
trick. The belt trick is fairly standard example in mathematics, and
it should be familiar to anyone who owns a garden hose or a central
vacuum in their home. If your garden hose has a kink in it, you can
undo the kink by twisting the tip of the hose a full rotation in the
opposite direction of the kink. The fact that you can hold a glass of
water in the palm of your hand, and make your arm twist two full
cycles without spilling the water is another manifestation of the belt
trick. Its relevance to the sphere eversion can be seen in two ways.
The most natural way of turning a sphere inside-out would be to put a
full kink in the equator. Bill Thurston, when Nathaniel was between 8
and 13 years old, had described an idea for a sphere eversion that used
the belt trick to uniformly smooth the kink out of the equator. The
other way that the belt trick comes into the sphere eversion is directly
through Smale’s original work. One can trace through a complicated
argument to see that Smale’s computation depended upon this loop of
symmetries of space being contractible in the space of all symmetries.
Bill Thurston exploited this to give a concrete description of sphere
eversions in terms of the belt trick. I saw this first mentioned in John
Hughes’s 1982 dissertation. John says that he learned it from Bill,
and Nathaniel’s younger brother Dylan told me that Nathaniel was
13 years old in 1982.

Both the Minimax eversion and Outside-In result from work ini-
tiated at a place called the Geometry Center, a location in Minnesota
that was funded through the National Science Foundation. The Ge-
ometry Center was a fun place to visit: a toy room for geometrically-
inclined mathematicians. Many geometric objects could be manipu-
lated and viewed on a computer screen. Some of the most popular
and enduring mathematical imagery from that era was produced at
the center. My opinion is that the toys were provided, the mathemati-
cians were just getting the hang of them, and the Center shut down
before anyone could envision the potential of the machinery. There
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are many aspects of mathematical research. One, and the most im-
portant of these, is the ability to produce theorems — results that
transcend specific examples and that are timeless. Another is to pro-
duce enduring examples. Examples are the testing grounds for theo-
rems. A deep understanding of intricate examples can lead to more
theorems as well as make the meaning of the theorem more accessible.
Genuine scientific research is guided by intellectual curiosity, does not
follow a time clock, and may be best achieved when a scientist has
the intellectual freedom to explore without encumbrances.

The essential steps of the eversion that is presented here first
appeared in my book, “How Surfaces Intersect in Space,” [1]. That
book was written shortly after the first “movie move” theorem had
been proven. A number of parts of that eversion did not satisfy me.
Most importantly, one step in particular skipped essential details.
After the second of the “movie move” theorems had been proven, I
realized there was a much more rigid method of everting the sphere.
One which took into consideration of the fold set and the cusp set
of the projections would be superior in a number of ways. Most
importantly, the complete internal structure could be analyzed.

The two “movie move” theorems were joint work, the first [2] with
Masahico Saito, and the second [3] with Masahico Saito and Joachim
Rieger. In the first movie move theorem only a sense of height was
analyzed in relation to moving a surface around. In the second movie
move theorem, we also fixed a sense of height in the cross-sectional
stills. Since the sphere eversion is such a complicated process, it is
a good testing ground for the movie move theorems. Both versions
of the movie moves theorem were developed in order to (a) develop
a calculus for moving surfaces that are embedded or immersed in
4-dimensional space, (b) to recognize when two surface diagrams rep-
resent the same embeddings (the diagrams are 3-dimensional pictures
or sculptures that represent surfaces embedded in 4-space), and (c)
to develop an algebraic method for distinguishing such surfaces. As
it turns out, a number of other mathematicians were interested in
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these processes for their algebraic and categorical ramifications. So
what started out to be an excursion in order to better understand sur-
faces as they are embedded in 4-dimensional space turned out to be a
fundamental axiomatic system for so-called higher dimensional alge-
bra. The sphere eversion is a calculation in that higher dimensional
algebraic system.

To conclude this section and turn to the next topic, the current
book is an intricate, intimate, and taxonomic view of an example of
the sphere eversion. The example is based on, but not identical to
the Froissart-Morin eversion. Successive stages differ by as little as
possible. Usually only one step is performed at a time. Sometimes,
a few steps are performed simultaneously when the sequence of these
is obvious from one of the several points of view given. In the next
section, the possible steps that can be taken and the types of images
seen are given. The imagery used in describing these steps is liter-
ally a collection of images, but it also involves the use of language.
Some of the language is standard mathematical terminology, and this
terminology needs supplementing. Let us proceed.





Chapter 5

Immersed Surfaces

Surfaces are approximated by their planes of tangency. In order to
understand how a surface can intersect itself, it is necessary to under-
stand how planes can intersect. The intimate details of the surface
intersections are encapsulated in the intersections between two planes
and among three planes. The large scale structure may undulate or
curve back upon itself, but in a local coordinate system it appears
that planes intersect.

It is possible for a pair of flat planes to lie tangent, but when
that happens the planes coincide. When the book is closed, the pages
are apparently tangent planes, but the pages have thickness. If the
pages were infinitesimally thin, then they would be coincident and
indistinguishable. Coincident pairs of planes and parallel planes are
the exception. In a truly technical sense, two planes chosen at random
intersect along a line. The angle of this intersection is not an issue
here. The model to consider is the intersection between the south
wall and the west wall. The line of intersection is vertical.

In coordinates, the south wall is represented by the plane x = 0,
while the west wall is represented by the plane y = 0. The set of
points that lie along the intersection of these two planes is the line
{(0, 0, z)} where z can be any real number. An illustration is indicated
in Fig. 5.1.

23
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Figure 5.1. An arc of double points

Similarly, three planes can intersect along a line. This would
be the case if you were to put a diagonal Japanese screen up in the
southwest corner of your room, and arrange it so that its edge lies
along the corner of the walls. More often, three planes that intersect
do so at a single point in a way similar to the intersection of the
floor, west wall, and south wall. In the same coordinate system as
above, the floor has equation z = 0, and the intersection point among
these three planes is (0, 0, 0) — the origin of space. An illustration is
indicated in Fig. 5.2.

The two illustrations depict the local pictures for a self-intersecting
surface in the case that the tangencies of the surface remain intact.
They illustrate double points and a triple point, respectively. As the
sphere turns from red to blue, it intersects itself in local pictures in
one of these ways. At each time, the set of double points is one di-
mensional, and at each time, the triple point are isolated even though
they also lie along arcs of double points. As the double points evolve
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Figure 5.2. A triple point as the intersection of coordinate planes

in time, they form a surface, and as the triple points evolve in time
they form a 1-dimensional set.

It is also good to demonstrate the things that cannot happen
when tangencies are preserved. Figure 5.3 indicates a type of point
called a branch point. At this point a segment of double points ends
at a peculiar singular point. At precisely this point of the surface, the
tangent plane is not to be found. In Chapter 9, I show you how not
to evert a sphere, but how to turn a sphere inside-out, by allowing
a pair of branch points to appear in an intermediate stage. Observe
that the fold line at the branch point changes from red to blue. This
change in color indicates a singularity in the tangent direction. At
a branch point, then, the tangent plane is not uniquely determined;
a sphere turned inside out via the introduction of a pair of branch
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points, does not have its tangent planes intact at the branch points.
It is not an eversion.

Figure 5.3. A branch point: this does not occur during the eversion

A sphere that intersects itself in space in such a way that it has
only double points and triple points of the type described above is
said to be a general position immersed sphere. During the process
of the eversion, the illustrations given are general position immersed
spheres. At the points in which the illustrations change (the part of
the process that is not illustrated, or the part of the process at which
your brain is meant to interpolate), the sphere is immersed, but it is
not in general position. At these stages, there may be simultaneous
tangencies between pieces of the surface, or there may be a quadruple
point.
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A surface when projected to a plane, like the orange that we
look upon, may have a segment upon which the tangent plane is
perpendicular to the plane of projection. Such a segment is called a
fold line; an example is illustrated in Fig. 5.4. The important fact to
understand is that a drawn surface, or a surface that is seen, has a
fold. This fold is the profile that distinguishes the surface from its
surroundings.

Figure 5.4. A blue fold

In addition to metaphorical language, formulas can be used to
describe the ideas of a fold. The expression y = x2 represents a
parabolic cylinder with its axis lying along the z-axis in space. When
this surface is projected onto the yz-plane — the plane for which
x = 0 — two sheets overlap when y > 0; meanwhile, along the z-axis
(x = y = 0) the surface folds onto a line. This surface is the local
model of a fold just as the intersection of the pair of planes x = 0,
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and y = 0 is a model for a double point, and the intersection among
the three planes x = 0, y = 0, and z = 0 is a model for a triple point.
At any particular time, a fold is a 1-dimensional set; as the sphere
moves, the folds form a surface in space-time.

Two folds converge at a cusp. One fold is visible, and that fold is
colored by the visible side of the surface. The other fold is obscured
in the projection and has the opposite color. The cusp represents
a point of the projection of the sphere onto the page at which the
tangent plane vanishes in the projection. The tangents in space do
not vanish, but they do vanish in the projection. Cusps can be given
formulaically: Consider the expression y = x3 − zx over the set of
points with both x and z taking values between −1 and 1. When this
surface is projected into the (yz)-plane (for which x = 0) in space,
there is a cusp at the origin. Figure 5.5 illustrates. In this figure the
cusp has been drawn so that the blue fold line is visible. The fold
is blue in the sense that it appears on the blue side of the surface.
The fold that is not visible, from the point of view of the observer,
is red. The color of a cusp is the color of the fold that is visible.
Cusps are isolated among themselves, but are the points at which
two folds converge. At a particular time, the cusp set is a collection
of isolated points, and as the sphere moves in time, the cusps form a
1-dimensional set.

Figure 5.6 illustrates an immersed sphere that is one of the steps
of the eversion. The figure demonstrates a red fold, a red cusp, a dou-
ble point arc, and a triple point by enclosing these in green squares.
The triple point indicated lies below a red sheet. When a point of
interest lies below a sheet of the sphere, it is said to be veiled. There
may be several veils between you, the viewer, and the interesting
point.
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Figure 5.5. A blue cusp

There are three other triple points in the figure; try and find
them. The cusp at the bottom of the figure is blue, and the red
sheet veils it. On the right of the illustration a blue fold emerges
from behind a red fold and this blue sheet intersects a red sheet
towards the bottom of the illustration. This particular phase in the
process is among the more complicated of the illustrations. It, and
each of its predecessors and descendants, are also described via a
sequence of horizontal cross-sectional planes that intersect the surface
in a sequence of self-intersecting closed curves. The constituent pieces
of such intersections are described momentarily.
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Red fold

Red cusp

double point arc

triple point

Figure 5.6. Cusps, folds, double points, and triple points together



Chapter 6

Movies

A surface that is immersed in 3-dimensional space may have double
points and triple points. To be immersed each point on the surface
has a neighborhood so that the surface is approximated by its tan-
gent planes within such a neighborhood, and each tangent plane is
embedded in space as any flat two dimensional subset might be. If
the only points of self-intersection are double points and triple points
(as described above) the surface is in general position.

During the eversion, the red sphere moves through immersions
until it becomes blue, and each illustration that is given here is the
projection (onto the page) of a general position immersion. Two
successive pictures differ by an immersion that may not be in general
position. So the set of illustrations represents a movie of the sphere
eversion. The interesting parts of the movie go unseen. You, as the
observer, learn to interpolate between stills of the movie.

Each still is the 2-dimensional projection of an immersion of a
sphere. To see the projection without seeing the internal structure
is to miss the nuance of the actors’ interpretations. For example,
Fig. 6.1 indicates the same surface that Fig. 5.6 does, and a different
triple point is indicated since the one that was behind the veil now is
completely hidden: the first layer of surface is opaque.

Three complementary techniques illustrate the internal structure
of each immersion. First, the surfaces themselves are illustrated as

31
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Red fold

Red cusp

double point arc

triple point

Figure 6.1. An immersed sphere with its inner structure hidden

if they are transparent. Second, the surface information is removed,
and the fold lines, double points, and triple points are indicated. Fold
lines are colored with the color of the surface that is on the convex
side of the fold. Degrees of transparency and line thickness convey
the distance of these 1-dimensional sets from you, the observer. The
same fold lines, double curves, and triple points are indicated in the
semi-transparent illustrations, and these sets with their color and
transparencies given are almost enough to reconstruct the internal
structure. Sometimes though, some critical levels on the fold set are
difficult to quantify. Third, the immersed surface is considered to
lie in front of the page, and a sequence of horizontal planes that lie
perpendicular to the plane of the page slice the surface in a sequence
of immersed circles. The horizontal planes are chosen to lie above and
below each critical level of the immersed surface. And the sequence
of immersed circles is called a movie of the surface. To fully describe
the notion of a movie, the notion of critical level is given a precise
definition, and a taxonomy of the types of critical points is necessary.
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In ordinary usage, a critical point means a time or a place at
which a decision is made or a change is happening. The ordinary
usage parallels the technical usage in which a critical point is a point
at which a function changes directions or a point at which a derivative
vanishes. Each immersed sphere is projected to the plane of the page,
and the page has a notion of height defined upon it. This way: ↑ is
up. The critical points of the height function are the points at which
some sets change from going up to going down or vice versa. The sets
in mind are the fold set and the double point set. A triple point is
also viewed to be critical since three sets converge there.

The height functions on the homogeneously red sphere and the
homogeneously blue sphere each have exactly two critical points: A
maximal point and a minimal point. Reading from bottom to top, the
minimal point is the birth of a simple closed curve, and the maximal
point is the death of a simple closed curve. The cross-sections and the
surfaces are indicated for the red sphere in Fig. 6.2.

A saddle point occurs at the crotch of a pair of pants, the arm pit
of a shirt sleeve, or indeed on a horse’s saddle. The English saddle,
which is less ornate than its western counterpart, has a pommel at
its front and a cantle at its rear, and the seat curves downward to the
left or right and upward towards the cantle and the pommel.

As the sphere moves it develops saddle points which persist for
some time during the motion, but eventually these disappear as the
blue side dominates. In a movie of a saddle, a pair of fundamentally
horizontal arcs are replaced by a pair of arcs that are for the most
part vertical, or vice versa. At such a saddle point, the fold set has a
critical point.

These critical interactions require some more description. A still
of a movie of a sphere is a planar picture of a closed curve. There is a
direction that is defined on a still: →, left to right. Arcs on the closed
curve are “usually” moving left to right or right to left. The points at
which directions change are critical points for the direction function.
Within the stills, vertical lines are disallowed since their tangencies
would be singular for the direction function. Instead, the curves turn
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Death

Birth

Figure 6.2. Birth and death critical points

at critical points. There is no intrinsic prejudice about vertical versus
horizontal; arcs that are purely horizontal are also disallowed. But
who makes the rules and how are they made?

An immersed closed curve in the plane is defined by means of a
function that is supposed to have non-vanishing tangencies at each
of its points. Such an arc is approximated by its tangencies just as
the sphere is approximated by its tangent planes. With respect to
any preferred direction, the tangent direction, then, is almost always
pointing towards or against the preferred direction. The tangent di-
rection is usually not “strictly parallel” to the preferred direction,
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nor is it strictly perpendicular to the preferred direction. This non-
parallel property is a quasi-physical phenomenon. Place a piece of
paper on the floor beside you and drop toothpicks upon the paper.
The toothpicks usually neither land vertical nor horizontal with re-
spect to the orientation of the paper. If the toothpick does appear
vertical, then a careful measurement indicates that it is only vertical
within some small measurement error. Mathematically, we say that
a line chosen at random is probably neither horizontal nor vertical.
Let me exemplify the meaning of the word random in this context:
the slope of a line is a random real number, and if the slope appeared
to be 0, then each of its infinitely many decimal places would have to
be 0. The probability of choosing digits at random and having them
all be 0 is infinitesimally small.

Now as the curves are being drawn, I often choose to draw the
tangents as either horizontal lines or vertical lines because by doing
so I can control the shape of the curve. The curves are computer
generated images, and their tangent directions are not chosen to be
arbitrary real numbers but they are chosen from a finite (albeit large)
set of rational numbers. The points for which I choose to have ver-
tical tangents are always among the critical points of the direction
function. The drawing software interpolates curves between chosen
points dependent upon a choice of tangent direction, magnitude, and
rate at which the tangent changes. If the first point has a tangency
pointing left and the second is drawn to the right and has a tangency
pointing right, then the computer interpolates a farthest left-most
point between them. Such a point is a critical point for the direction
function.

So when a pair of arcs that, for the most part, have horizontal
tangents are replaced by a pair of arcs that each have a point of
vertical tangency, there are a pair of critical points that are born.
The birth of these critical points on the interpolating surface forms a
critical point on a fold line.

When I draw the stills to a movie, I am assuming that you, the
observer, are viewing the still from the bottom of the rectangle that
contains the still. The arcs are cross-sections to the sphere pigmented
on its inside and its outside. So the closed curves should be similarly
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pigmented, but they are not. Instead, the critical points of the closed
curves are tacitly pigmented via the corresponding folds, and there
is a simple convention that determines the pigments of the fold: The
color of a fold, or the color of the critical points in the cross-sectional
stills in a movie representation are determined to be the colors on the
optimal side of the critical point. If the arc in the still that faces you is
red (respectively, blue), and the critical point on that arc is a minimal
point, left-pointing, or ⊂, then the critical point is red (respectively,
blue). The same conventions apply to right-pointing: ⊃ maxima.

Figure 6.3 depicts a blue saddle as described above. I ask you to
imagine red saddles and saddles that are obtained from this movie by
reversing its time direction.

Saddle point

Figure 6.3. A saddle critical point

There are eight different types of cusps that can occur. Figure 6.4
indicates a minimal cusp in which the blue fold is visible and on the
left. The other seven variations occur when (a) red and blue are
interchanged, (b) the visible fold is on the right: ⊃, (c) the cusp is a
maximal point and the visible fold is on the left: ⊂, or (d) the cusp
is a maximal point and the visible fold is on the right: ⊃. You are
encouraged to draw these variations of Fig. 6.4.
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The color of a cusp is the color of the more visible fold that
emanates from the cusp. Thus the cusp illustrated is a left-down-blue
cusp.

Figure 6.4. A blue minimal cusp with visible fold on the left

Figure 6.5 indicates the standard illustration of a (blue) torus
which is the surface of a (blueberry) doughnut or bagel. The illustra-
tion is decomposed in terms of its visible and invisible folds, and a
movie presentation is indicated. The critical points are labeled with
numbers 1 through 10, and each represents a change between the
stills. In order (from bottom to top) these are:

(1) the birth of a simple closed curve

(2) a down-pointing cusp with a visible (⊃)-red fold once veiled
by a blue surface
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(3) a down-pointing cusp with a visible (⊂)-red fold once veiled
by a blue surface

(4) a fission saddle point (one curve becomes two)

(5) the interchange of two (⊃)-folds on the left of the figure

(6) the interchange of two (⊂)-folds on the right

(7) a fusion saddle (two curves merge to one)

(8) an up-pointing cusp with a visible (⊃)-blue fold on the right

(9) an up-pointing cusp with a visible (⊂)-blue fold on the left

(10) the death of a simple closed curve.
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Figure 6.5. The standard torus and its corresponding movie
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Although the torus is not a central figure in the discussion of
the sphere eversion, its depiction is a standard example throughout
mathematics classrooms and topological lectures. My hope is that
the current short analysis — when there are only few details upon
which to focus — helps you understand the context and conventions
of the subsequent drawings.

Double Points and Triple Points

An immersed surface in 3-dimensional space has a closed 1-dimensional
set of double points. That is, the double points form circles that may
have further self-intersections at triple points, and that may have
many critical points, but always form closed curves. Such curves
have maximal and minimal points which, from the point of view of
a movie, are caused by a pair of parallel strands crossing back and
forth or a pair adjacent crossings disappearing. Figure 6.6 indicates
the birth of a pair of double points (from bottom to top) in the case
that the two sheets involved have different colors. As an exercise, the
variations of this scenario are left to you. The illustration is called a
type II birth. A type II death is the upside-down version of the movie.

Figure 6.7 indicates a triple point in movie form. The three sheets
that intersect are no longer flat coordinate planes, but each sheet is
bent. Nevertheless, the triple point appears to have three flat sheets
coinciding at the critical level of the picture. The illustration is called
a type III move. Observe that the three sheets involved could all be
the same color, or any two of them could be colored the same.

Double point arcs can cross folds. Figure 6.8 indicates this sit-
uation which is called a ψ-move, a double point bounce or simply a
bounce. Among these names, the name ψ-move is the most precise:
The critical level from one perspective resembles the letter ψ. How-
ever in the projection, the fold lines and the double points appear to
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Figure 6.6. The birth of a pair of double points

become tangent. So the two sets appear to touch and bounce off each
other. As much as I would prefer to use the more technical term, I
find myself thinking, “the critical point bounces inside.” Words and
terms sometimes acquire power beyond their chosen context, and it
becomes difficult to disassociate the word from the idea. I know full
well that the double point moves through the critical point, but my
inner voice always calls this a bounce. So the terminology, while not
fully descriptive, stays.

Critical Exchanges

In our own universe, the order in which some things are done does
not appear to matter. If, when you set the table, you first put out
the spoons and then the forks, the result is the same in the case when
you first put out the forks. On the other hand, it is a good idea to
check if the keys are in your hand before you lock the door. Some
critical levels on a given immersed curve may be interchangable: a
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Figure 6.7. A triple point

pair of minima (⊂ and ⊂) occurring sufficiently far apart in a vertical
direction may be interchanged. Similar interchanges occur for a pair
of distant maxima (⊃ and ⊃), a distant pair of a maximum and a
minimum (⊃ and ⊂), and an optimum and a crossing that are far
enough apart. How far is far enough? If the immersed curve could
be drawn with these event occurring at the same point from left to
right, then there are two perturbations of that scenario. The criti-
cal exchange is the manifestation of these perturbations. Figure 6.9
illustrates three such cases. There is a fourth case, and there is the
obvious variations of the exchange of a crossing and a maximum in
which a crossing and a minimum exchange positions.

Example

Figure 6.10 contains an illustration of a movie and the corresponding
immersed sphere. The critical levels of the movie are numbered and
the corresponding critical points on the sphere are illustrated. There
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Figure 6.8. A ψ-move in which a double point segment

crosses a fold

are several places at which critical exchanges are not explicitly listed.
Also the critical levels (from left to right) within some stills of the
movie are out of order. Finally, the order of events within the movie
may not strictly coincide with the height on the corresponding illus-
trations. The orders of the critical points can be exchanged when
they are far enough apart on the surface. I have some good reasons
for these inconsistencies of notation, and I have some bad reasons.
You can decide which is which.

Sometimes I get lazy. More specifically, the precise placements up
and down of the critical levels are determined by editing a previous
figure. In the editing process, critical points are moved. The lines
that connect the critical points are known as “Bézier” curves. They
are controlled by various mouse control clicks and visual sense. To put
it plainly, I choose the positions of the critical levels on the surfaces
to make them look as good as I can while using Bézier curves, and
while trying to keep the number of pieces that must change to be a
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Figure 6.9. several critical exchanges

few as necessary. Similarly, the curves in the movies are chosen to
look nice, and to be topologically accurate. But again, movies and
the surfaces are edited from a previous picture. So steps are skipped.
The figures don’t look as nice if a conventional set of drawing tropes
is adhered to religiously. Also, the order of critical levels may have
come from a previous figure and the levels in the movies may have
come from a subsequent figure.

The movies themselves would become painfully long if each criti-
cal exchange is explicitly listed. On the other hand, many changes be-
tween surfaces (movie moves) can occur when various events exchange
positions. These extra exchanges would result in way too many sur-
faces being drawn. While the beginning algebra student may enjoy
seeing each step in a calculation being worked explicitly, it does not
take long for one to see that steps can be safely skipped. Virtually
all the skipped steps herein have to do with critical exchanges.
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My own visual sense and kinematic imagination is fairly well
tuned. These visual abilities come from practice. There is a didactic
purpose to the current work. I am training you to see the relation-
ships between the movies and the illustrations. The missing steps and
inconsistent height functions help you know what features to find, and
help train your visual mind. The current work is the most detailed
and complete version of the sphere eversion that has been created. It
could be improved, but this is as far as I go with it.
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Figure 6.10. An example of a movie and the corresponding

immersed sphere
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Here is a list of the critical levels:

(1) birth

(2) right-down-blue cusp

(3) type II birth

(4) bounce on the left

(5) critical exchange

(6) type II birth

(7) type III

(8) bounce on the right

(9) type II death

(10) birth

(11) type II birth

(12) saddle point

(13) minimum bounces out on the right

(14) interchange critical levels in the still

(15) left-up-blue cusp

(16) type II birth

(17) Maximum bounces out on the left

(18) type III

(19) type II death

(20) maximal points on the right change position

(21) mimimum bounces in on the left

(22) type II death

(23) minimum bounces in on the left

(24) right-up-blue cusp

(25) left-up-red cusp

(26) type II death

(27) death.
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Summary

A general position immersed sphere in 3-dimensional space potentially
has double points and triple points. By looking at a sphere, we are
projecting it to the plane of the retina. In this projection there are
fold lines that either form closed curves or that end at cusps. A
sequence of cross-sectional planes containing the line of sight intersect
the sphere in immersed planar curves. These have minima that point
left, ⊂, and maxima that point right, ⊃. Successive stills differ by
(1) births, (2) deaths, (3) saddles, (4) cusps, (5) type II moves in
which a pair of double points appears or vanishes, (6) type III moves
in which three points that form a triangle interchange their relative
position and the triangle is reflected, (7) points at which double points
pass over folds, or (8) critical points within the stills can change
relative position. These changes in cross-sectional views are reflected
in critical points on the projection. For such a sphere the cusps and
the triple points are isolated points. The double points form closed
curves. The folds are closed curves and arcs that terminate at cusps.
The movies are read from bottom to top, and the viewer is assumed
to read the cross-sectional still from the point of view of bottom of
each still. Depth within the immersed sphere is indicated by making
lines appear thinner and more transparent.

To help you understand the evolution of the immersed spheres, I
describe the changes that occur between the pictures and their corre-
sponding changes to the movies. These movie moves are the subject
of the next chapter.



Chapter 7

Movie Moves

Each immersed sphere that is viewed may have double point arcs and
isolated triple points. The sphere’s projection along your line of sight
has isolated cusps at which pairs of fold arcs converge. This chapter
describes how these singularities are introduced and how they change
as the sphere evolves from red to blue.

Thus, I describe three types of interactions among the singular-
ities: interactions in which only the fold and cusp set is affected,
interactions in which only the double points and triple point sets are
affected, and interactions in which the folds, cusps, double points and
triple points are affected. Each change to the singular sets is named,
and in Chapter 12 each step in the process is described by means of
one of the interactions given here.

The first section gives a digression on how the folds, double
points, and triple points are drawn on pieces of the intrinsic sphere.
As the sets evolve, an interpolating (or time-elapsed) view of these
sets is demonstrated. These time-elapsed viewpoints help develop
a temporal-to-spacial intuition. As time passes in the process, the
“camera shutter” is left open, and the change in the interesting sets
is depicted from left to right. In these views, the cusps, folds, dou-
ble points, and triple points of the before/after scenarios form the
boundaries of a set of one larger dimension.

47
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The Evolution in the Intrinsic Sphere

To say that the sphere is 2-dimensional is to say that it can be decom-
posed as a set of patches, each of which is identifiable with a portion
of the plane. In the drawings of the movie moves, each side is repre-
sented by a portion of the intrinsic sphere —the sphere that is being
mapped into space. The rest of the sphere dwells out of the bounds of
the illustration. The folds, double points and triple points, however,
can be drawn on a patch or several patches of the sphere. In the case
of double points, there are two patches involved, and for triple points,
there are three. As the fold and double point sets change, they sweep
out surfaces in the time-elapsed sphere. The triple points sweep out
arcs. After each illustration of a movie move, a corresponding illus-
tration in patches of the intrinsic sphere is drawn. On the left side
of the figures, the before and after views in patches of the ambient
sphere are illustrated. On the right side, a set that is one dimension
larger interpolates between the patches. For example, in the fold set,
interpolating surfaces occur within a set of 2-spacial + 1-temporal-
dimensions. Of course, 2 + 1 = 3, and time becomes the left-right
dimension of the figures.

In general, the evolution of an object refers to how the object
changes within the deformations allowed. As the object changes, it
is traced in a time-elapsed form. A time-elapsed sphere is the 3-
dimensional set that consists of a thickened sphere — the material
that forms a tennis ball or the peel of an orange. I could ascribe
“before” to the inner white peel of the orange and the “after” to the
orange side with time the interpolating quantity. But that metaphor
interferes with the blue inside and red outside of the infinitesimally
thin sphere. Instead, only patches of the sphere are considered at any
one time, and for the duration of the time, the time-elasped patch
is the 3-dimensional box with “before” to the left and “after” to the
right.

The Fold Set

Go to the mirror, close your mouth, open your teeth, and poke your
tongue into your left cheek. A fold appears that has an up-left cusp
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and a down-left cusp as its end points. The birth (or death) of a pair
of cusps that are connected by a pair of fold lines is called the lips
change because when the folds are drawn sideways, their introduction
looked like a pair of lips. I think that the terminology is due to French
mathematician, René Thom. To change a round red sphere into a
round blue sphere, an arc of blue folds has to be introduced. One
way of doing so is to introduce folds via the introduction of lips.

The affect to a movie and to the resulting surface is illustrated in
Fig. 7.1.

Figure 7.1. The introduction or cancelation of a pair of cusps

via the lips move

As in the discussion of dimensions (Chapter 4), the evolution of
a cusp forms an arc in the time-elapsed picture; the evolution of a
fold forms a surface which might have seams along its time-elapsed
cuspal boundary. Therefore:

The evolution of the lips change forms a birth (or death) surface
in the 3-dimension space that is the time-elapsed sphere. The surface
of folds in this evolution has a seam formed by the cusp set. This
seam of cusps is structurally similar to the set of folds of the original
sphere, but you should envision it as the seam of a pita bread sandwich
rather than the profile of an orange. In the sandwich, there is a
separation between the two bread surfaces, they are joined at the
seam, and the seam represents a sharp transition between the two
surfaces. Similarly, in Fig. 7.2, the seam of the folds during the motion
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is illustrated by a blue line that separates the blue fold surface, which
faces the viewer, from the red surface, veiled by the blue. This line is
the evolution as the cusps are created from left to right.

Figure 7.2. The time-elaspsed evolution of lips within a
patch of the ambient sphere

Consider a down-pointing cusp and an up-pointing cusp; both of
the same color and the same handedness (so the visible folds of both
are on the left or both on the right) with the down-pointing cusp
directly above the up-pointing cusp. These can be eliminated via the
beak-to-beak cusp cancelation. Similarly, such a pair can be introduced
when a visible fold and a veiled fold of the opposite color and opposite
handedness are nearby. Figure 7.3 illustrates the creation of the beaks
from left to right.

The evolution of the beak-to-beak change in the fold set forms
a saddle surface in the 3-dimensional space that is the time-elapsed
sphere. The surface of folds during this evolution has a seam along
the saddle. The seam is analogous to the seam of a pair of pants in a
neighborhood of the crotch of the pants.
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Figure 7.3. The introduction or cancelation of a pair of cusps
via the beak-to-beak move

Figure 7.4. The time-elapsed evolution of beaks within a
patch of the ambient sphere

There is another way in which a pair of fold points can be in-
troduced or distroyed. A simple fold arc can be interrupted via the
introduction of a pair of oppositely colored cusps with differing hand-
edness. The swallow-tail singularity occurs behind your knee when
you bend or straighten your leg. Figure 7.5 illustrates the swallow-tail
move.

The evolution of the swallow-tail creates a cusp in the fold set of
the time-elapsed sphere. On the left of the swallow-tail move, the fold
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Figure 7.5. The introduction or cancelation of a pair of cusps

via the swallow-tail move

set is a vertical line; say that it points down. On the right, the fold
set (which originally pointed down and was homogeneously blue) now
has a short red segment that points up followed by a second longer
blue segment that points down. At the moment of the swallow-tail,
the pair of opposing cusps are created, and this creation point is a
cusp for the time-elapsed fold-set. Figure 7.6 illustrates.

Figure 7.6. The time-elaspsed evolution of a swallow-tail

within a patch of the sphere
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A fold line can bend. When it does, a canceling pairs of critical
points are introduced in the movie. Specifically, a saddle point is
introduced at the same time a birth or death is introduced. Figure 7.7
indicates the situation. Think of a mountain at the edge of a valley
gradually eroding. In the cross-sectional movies, the canceling critical
points are understood (from bottom to top) to be a saddle followed
by the death of a simple closed curve. This is the only situation in
which the fold set changes but there is no effect on the cusps. The
move is called critical point cancelation or creation.

Figure 7.7. Critical point cancelation or creation

The evolution of the critical point cancelation between an opti-
mum and a saddle point creates a cusp in the fold set of the time-
elapsed sphere. Unlike the swallow-tail, the fold set is mono-chromatic.
This situation is depicted in Fig. 7.8 where the optimal point is a max-
imal point, and this cancels with a saddle point from left to right.

In the last situation that involves only cusps and folds, the direc-
tion of a cusp changes in the presence of a saddle. The move is called
a horizontal cusp. Figure 7.9 indicates a left-down-blue cusp changing
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Figure 7.8. The time-elaspsed evolution of the cancella-

tion/creation of a saddle and optimal pair of critical points

to a right-up-blue cusp. In this move the color of the cusp remains
constant but its up/down and left/right natures are interchanged.

Figure 7.9. A horizontal blue cusp

The evolution of the horizontal cusp involves a zig-zag in which
the central segment changes color in the time-elapsed view. Fig-
ure 7.10 illustrates. An arch is drawn in the patch of the sphere
because the critical behavior of the immersions has to be parroted on
the intrinsic sphere in order to piece together all of the local changes.
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The need for the arch becomes apparent when the eversion proceeds.
On the right of Fig. 7.10, the folds evolve to form a surface.

Figure 7.10. The time-elaspsed evolution of the horizontal cusp

Observe that the creation/annililation of cusp via lips or the beak-
to-beak move causes either an optimum or a saddle point to appear in
the time-elapsed sphere. Similarly, the swallow-tail and the critical
cancellation involves a type of cusp being created. The structures
of optima, saddles and cusps repeat themselves in an increasingly
baroque fashion throughout the processes. The duplications of form
manifest analogies in their algebraic descriptions. Roughly, as the
algebra becomes more complicated, within its deep inner structures,
the familiar appear.

Double Points and Triple Points

A simple closed loop of double points can be created when two parallel
sheets of the sphere touch and pass through each other. In the movie,
a type II birth is immediately followed by a type II death. In the
illustration a blue sheet pushes through a red sheet, forming a circle
of double points. Figure 7.11 illustrates a type II bubble move or
simply a bubble move.
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Figure 7.11. A bubble move on the double point set

In the intrinsic sphere, two sheets intersect after a loop of double
points is created in space. That is, each arc of double points in the
immersed sphere comes from two arcs on the sphere. These arcs cover
the arc that is in space two-to-one. The double point set lies within
3-space, and its lift to the intrinsic sphere is called the double decker
set. The double points in the intrinsic sphere cover the double points
in space like a double decker sandwich.

The evolution of the double point set in the bubble move forms
a pair of bowls in the double decker set. These map in the obvious
way to a single bowl in space. Figure 7.12 illustrates the birth of
these bowls. The bubble move is, of course, reversible: A simple loop
of double points that bounds a pair of disks on the sphere can be
removed.

Consider a movie consisting of a type II death followed by a type
II birth: A pair of crossing points between two arcs is replaced by two
parallel arcs, and then crossings are reintroduced. Such a movie can
be replaced by the pair of crossing points remaining static. Figure 7.13
illustrates the type II saddle move. On the immersed surface, a pair
of parallel double point arcs that bound two strips are replaced by a
pair of double point arcs in which the top has a minimal point and
the bottom has a maximal point.
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Figure 7.12. The evolution of a loop of double points as it
lifts to the intrinsic sphere

The evolution of the double decker set in a type II saddle move
consists of a pair of saddles in the intrinsic sphere. Figure 7.14 il-
lustrates. These two saddles cover a single saddle of double points in
(3+1)-space-time.

Consider a movie in which the first still contains a pair of arcs
that cross once. The second still is obtained from the first by a type II
birth to the right of the original crossing, and the last still is obtained
from the second by the removal of the two crossings on the left via
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Figure 7.13. A saddle move on the double point set

Figure 7.14. The evolution of a pair of arcs in double decker
set in the intrinsic sphere during a type II saddle move

a type II move. This movie can be replaced by a sequence of three
stills in which the crossing remains virtually still and nothing further
happens. Figure 7.15 illustrates the type II zig-zag move.
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Figure 7.15. A type II zig-zag move

Figure 7.16. The evolution of the double decker set in the
intrinsic sphere during a zig-zag move

The evolution of the double decker set in a type II zig-zag move
consists of a pair of cusps on the double decker surface. Figure 7.16
illustrates. As in the cases of the type II bubble and type II saddle
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moves, these cusps map to a single cusp in the double point set in
(3 + 1)-space time.

The type III-type III move involves replacing a pair of type III
moves by an inertial situation. Figure 7.17 illustrates.

Figure 7.17. A type III-type III move

The evolution of the triple decker set in a type III-type III move
involves three copies of a type II birth. Figure 7.18 illustrates. The
triple points of the sphere are double points of the double decker set.
At a fixed moment, an isolated triple point lifts to the intrinsic sphere
to three points. Each of the three double point arcs that cross at the
triple point, lifts to a pair of arcs in the double decker set. So the
triple decker set for an isolated triple point consists of three copies
of a crossing between two arcs. In the type III-type III move, a pair
of triple points are created from left to right. The six double decker
arcs involved occur in three pairs, and proceeding left to right these
change from being three pairs of parallel arcs to three pairs of arcs
with two crossing points each.
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Figure 7.18. The evolution of the triple decker and double
decker sets in a type III-type III move
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The quadruple point move or tetrahedral move is the most im-
portant move from the point of view of this sphere eversion. In this
situation, four sheets of the sphere form a tetrahedron whose four ver-
tices are triple points. We consider one of the sheets to pass through
the other sheets thereby inverting the orientation of the tetrahedron.
There is a coordinate system in which the four sheets of the sphere
can be identified with the planes x = 0, y = 0, z = 0, and x+y+z = 1
before the move, and for which the last plane moves to x+y+z = −1
at the end of the move. At the singular instant at which this plane
passes through x + y + z = 0, the four triple points coalesce to be a
quadruple point. According to a Theorem of Banchoff and Max, ev-
ery sphere eversion has at least one quadruple point. Many eversions
(for example, Outside-In) have a singular point at which more than
four sheets converge. The immersion that I illustrate has exactly one
quadruple point, and therefore, we can separate the eversion into a
red side or a blue side. Each immersed sphere that we see is either red
or blue depending on which side of the quadruple point the immersion
lies. Figure 7.19 illustrates the quadruple point move.

Figure 7.19. A quadruple point

The evolution of the decker set under the quadruple point move
involves four type III moves among the twelve triple decker arcs. La-
bel the arcs on the top still of the left hand movie 1 through 4 from
left to right. Each patch of the sphere before the move can be thought
of as a rectangle labeled 1 through 4. In the first sheet, there are three
arcs of double points that can be indicated by 2, 3, and 4. The triple
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points on sheet 1 appear as double points among these arcs. From
top to bottom they are (23), (24), and (34) so that they correspond
to the triple points (123), (124), and (134) on the first sheet. The
notation (123), for example, indicates the intersections among the
sheets labeled 1, 2, and 3. On the left side of the quadruple point
movie, the triple points from top to bottom are (123), (124), (134),
and (234). The bottom most triple point does not occur on sheet 1
and therefore on the left there are three straight segments of double
points at the bottom of that sheet. On the right from top to bottom,
the triple points are (234), (134), (124), and (123). The same triple
points appear in the opposite order. So on the right on the first sheet
from top to bottom, the intersections are (34), (24), and (23) — the
same sequence as on the left but in the reverse order. The difference
between right and left is achieved by a type III move.

The analysis of the previous paragraph applies to each of the four
patches of the sphere involved with the labeling adjusted, of course.
The quadruple point is the simultaneous occurrence of four triple
points of the double decker set.

Double Points and Folds

The double point set can interact with the fold set and the cusp set
in several ways. This section describes the movie moves in which the
relationship between the double point set and the fold set changes.

The ψ,ψ-move replaces a double point arc in the neighborhood of
fold with an arc that bounces back and forth over the fold. Figure 7.21
illustrates.

The evolution of the decker set under a ψ,ψ move is a type II
move between a fold and one of the double decker arcs with the other
acquiring a slight bend. One of the double point arcs before the move
lies parallel to the fold line on that patch of the sphere. The other arc
lies on a fundamentally straight plane. After the move, the straight
plane has bent a little, and the double point arc has a segment on the
other side of the fold. Figure 7.22 illustrates.
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Figure 7.20. The evolution of the decker set under a quadru-
ple point move
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Figure 7.21. A ψ,ψ-move

Figure 7.22. The evolution of the decker set under a ψ,ψ move
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A double point bouncing through a cusp causes the proximity of
a cusp to the observer to change when one of the folds that ends at
the cusp has a double arc bouncing over it. The double arc must also
cross in front or behind the other fold that defines the cusp. After
the move, the double point arc ends up bouncing over the other fold.
Figure 7.23 illustrates.

Figure 7.23. A double point bouncing through a cusp

The evolution of a double point bouncing through cusp in the
decker set consists of a double point arc bouncing over a cusp line
of the fold surface in one sheet, and the other sheet of the double
point surface gaining a slight bend. Figure 7.24 illustrates.

A type II move can occur in a region near a maximum, minimum,
or saddle. If an arc of double curves bounces over one of the resulting
folds, then the type II move can pass over the optimum on the fold
set. Figure 7.25 illustrates the case of a type II move passing over
a maximum with the case of a minimum being entirely analogous.
Figure 7.26 illustrates the case of a type II move passing over a sad-
dle. This picture also can be turned upside-down. These moves are
grouped together within this paragraph because from the points of
views of the drawings, they appear to be quite similar.

Both an optimum and a saddle induce an optimum on the fold
set. The birth of a circle induces a minimum, ^, the death of a
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Figure 7.24. The evolution of the decker set when a double
point passes through a cusp

circle induces a maximum, _, and a saddle induces either type of
optimum on the fold set. There are two easy ways to quantify the
differences between an optimum and a saddle. At a saddle point the
⊃ (or maximum) is to the left of the ⊂ (or minimum) while at a birth
or death, the left-pointing ⊂ is to the left of the right-pointing ⊃.
Thus, the surfaces, that converge at the fold for the saddle, project
to the outside of the ^ or _ while they project to the inside at births
and deaths.

The evolution of the decker set when a type II move passes over an
optimum or a saddle consists of a ψ move with a sheet of the fold sur-
face bouncing over a sheet of the double point surface while the other
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Figure 7.25. A type II over an optimum

Figure 7.26. A type II moves over a saddle

double point surface forms a parabolic arch or trough. Figure 7.27
illustrates one possible case.

The horizontal type II move is among the more difficult to illus-
trate even though from some points of view, the move is quite natural.
In it, a type II move is to occur when two optima within the stills
of the movie are present. In the given illustration, the optima are
both minima (⊂), but they could both be maxima (⊃), or one of each
type. In fact, a clever application of the other moves makes any two
of these three possibilities a consequence of the remaining one, but
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Figure 7.27. The Evolution of a type II move over a saddle
or an optmimum

that subtlety does not concern us here. By convention, a type II birth
occurs by taking a pair of parallel horizontal arcs and introducing a
pair of crossings in these arcs. When the arcs are not horizontal but
have optima on them, the optima have to bounce out of the way for
the move to occur. There is a choice of which optimum moves first,
and the horizontal type II move reflects the order of these choices.
Figure 7.28 illustrates the move.
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Figure 7.28. A horizontal type II move

Figure 7.29. The evolution of the decker set under the hor-

izontal type II move
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The evolution of the decker set under the horizontal type II move
consists of a pair of ψ bounces with the fold surface bouncing over the
optimum of the double point set. Figure 7.29 illustrates.

Triple Points, Double Points, and Folds

Observe that a type II birth or death is a critical point (minimum or
maximum) for the height function of the sphere when it is restricted
to the double point set. If there is a triple point nearby, there is
a corresponding ψ-move between the triple point and the type II
move. In this way, the triple point can bounce to the other side of
the optimal point on the double point set. Figure 7.30 illustrates one
of the variations of the move called the triple point bounce. You can
easily determine the other variations of this move.

Figure 7.30. A triple point bounce

The evolution of the triple decker set in a triple point bounce
consist of three copies of the corresponding double point bounce. Fig-
ure 7.31 illustrates. Again the triple decker set is considered as the
points of intersection in the double decker set as these sit in the in-
trinsic sphere.
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Figure 7.31. The evolution of the triple decker and double
decker sets in a triple point bounce
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In a situation similar to the horizontal type II move, a type III
move may be obstructed by an optimum point. The type III move is
supposed to occur in the presence of a triangle, but one side of that
triangle may be bent. In a type III passes over a fold move, the fold
bounces either in front or behind the triangle over which the type III
move is to occur.

Figure 7.32. A triple point passes over a fold

The evolution of the decker set under a triple-point-passing-over-
a-fold consists of a triple point between the fold line and two of the
double decker sheets while the other four double decker sheets continue
to cross as pairs of generic planes. Figure 7.33 illustrates.

There are a few more situations that are not explicitly articu-
lated, but are part of moves to surfaces. Critical levels in the charts
may exchange positions provided they lie far enough away from each
other. Also, the exchange of vertical positions within the charts hap-
pen without much fanfare.

Within the movie context, it is quite easy to confuse folds that
both point left (⊂) or both point right (⊂), and mistakes occur when
such folds are confused. Labels as developed in the Gauss-Morse
section of Chapter 10 make things more clear.
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Figure 7.33. The evolution of the decker set as a triple point
passes over a fold
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Conclusion

As you can see, the description of the movies moves and their ef-
fects on the decker sets requires patient, vigilant, and visual intuition.
The evolutionary results upon the decker sets mimic the pieces that
constitute the immersed sphere. As the sphere evolves, each step is
described by a movie move taken from the set given here. In rare
situations, a sequence of moves occurs at a single step. To recapitu-
ate the ideas of this chapter, the next chapter is a tabulation of the
dimensions of the resulting sets (double point set, triple point set,
double decker set, etc.).





Chapter 8

Taxonomic Summary

An immersed sphere is described by a movie. Any movie is decom-
posed as a sequence involving some of (or all of) the following scenes:
birth, death, saddle, cusp, type II, ψ, critical exchange, or a type III
move. A height function (left-to-right) on the stills of the movie allows
the critical points (⊃, X, and ⊂) of one still to be traced to the next,
and subsequently throughout the scene. The scenes, then, give rise
to optima on folds, cusps, births and deaths of double points, double
points passing over folds, and triple points. These are, in turn, the
critical points with respect to the height function (down-to-up) of the
corresponding illustration of the immersion. The changes in critical
behavior, as the immersion changes, are tracked via the movie moves
which quantify singular immersions. The singularities occur at the
blink of an eye and, therefore, are depicted by a before/after point of
view. The singularities are caused by coincidences among the critical
points in the illustrations. It is a good moment to step back from the
previous two chapters and to summarize the critical points and the
singularities in a tabular format. Doing so rounds out Chapters 4, 6
and 7 by providing an encapsulated glossary.
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Scenes that constitute a movie

Scene Result

Birth/Death Smooth creation/annihilation of a
monochomatic pair of folds with
min. on the left and Max. on the right

Saddle Smooth creation/annihilation of a
monochomatic pair of folds with
Max. on the left and min. on the right

Cusp Sharp creation/annihilation of a pair of
folds with min. on the left and different
colored Max. on the right

Type II Creation/annihilation of a pair of double
Birth/Death points
Type III Convergence and subsequent divergence of

three double point arcs; in the before and
after stills, the three double points
bound a triangle

ψ Double point arc and fold line
exchange depths

Critical exchange A pair of distant critical points exchange
left and right positions

Within the encoding of the fold lines, folds that come from ⊂ are
labeled with lower case letters r for red, and b for blue. Similarly,
folds of the form ⊃ are labeled R for red and B for blue. As a
further affectation, the word minimum, its plural (minima), and its
abbreviation (min.) begin with lower case letters while Maximum,
Maxima, and Max. begin with upper case letters. The notation r, b,
R, B is explained in more detail in Chapter 10 where Gauss-Morse
codes are explained.
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Movie-moves (part 1)

Movie-move Result Time Elapsed

Lips Creation/annihilation An optimum
of a pair of cusps on the fold set
connected by oppositely
colored folds

Beak-to-beak Creation/annihilation A saddle on
of a pair of cusps by the fold set
breaking or joining a
pair of fold arcs

Swallow-tail Creation/annihilation of A cusp on
a pair of cusps the fold set
by interrupting a fold
of one color
with a segment of
the other color

Horizontal cusp The (up/down) The bench of
direction of a folds changes
cusp changes color
as a saddle turns
upside-down
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Movie-moves (part 2)

Movie-move Result Time Elapsed

Type II bubble Annihilation/creation of Cap/bowl
simple loop of double in the double
points point set

Type II saddle Creation/annihilation Saddle in the
of a min. over a Max. double point set
of the double point set
via a saddle

Type II zig-zag Cancelation/creation Cusp in the
of a Max./min. double point set
pair of type IIs

ψ,ψ Cancelation/creation Death/birth
of a pair of double on the set of
points passing bounce points
over a fold

Movie-moves (part 3)

Movie-move Result Time Elapsed

Type III-Type III Cancelation/creation Arc with an
of a pair of triple optimum in
points triple point set

Quadruple point Interchange of Quadruple point
the position of at the singular
4 triple points that moment
form a tetrahedron

Type III bounce Move an optimum ψ move
on the double point between
set to the left/right triple point
of a triple point and type II
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Movie-moves (part 4)

Movie-move Result Time Elapsed

Type II over ψ moves to ψ move between
optimum other side of bounce point

the optimum and optimum
Type II over saddle ψ moves to ψ move between

other side of bounce point
the saddle and saddle

Type II over cusp cusp moves to ψ move between
other side of bounce point
a veil and cusp

Type III over fold Triple point moves apparent tangency
to other side of between triple
the veil formed point arc and
by folded sheet fold surface

Horizontal type II Type II move Branch point within
in the presence the double
of a pair of folds point surface

Next, I tabulate the sets of points that are of interest, and remind
you of their dimensions at each time, and as the process evolves.

Dimensions of the sets

Set Fixed Time Time elapsed
Dimension Dimension

Cusp 0 1
Folds 1 2
Max./min. & saddles 0 1
on fold set
Double points 1 2
Triple points 0 1
Bounce points 0 1
Max./min. & saddles 0 1
on double point set
Quadruple point − 0
Intrinsic Sphere 2 3
Ambient space 3 4
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Of course, every number in the third column is one more than
the number in the second column since the evolution of time causes
dimensions to increase by one. There is only a quadruple point at
a singular instant, so its dimension at any fixed time does not make
sense. Finally, a 0-dimensional point set is a set whose points can
be separated from each other. At any time, there may be as many
as four triple points, but they are distinct. Meanwhile, the double
points and folds form arcs at any fixed time, and therefore cannot be
separated.



Chapter 9

How Not to Turn the
Sphere Inside-out

The disallowed scene in all of our movies is a branch point (See
Fig. 5.3). It is called a type I move — you no longer need be cu-
rious what comes before a type II move. It is disallowed since the
image of a sphere that has branch points has at least one pair of
these and at these points there is no well-defined tangent. The folds
change colors at the branch points. As a warm-up to the real thing,
I show you a method of turning a sphere inside-out which includes
branch points. But the process is too easy — like ending a game of
Risk by kicking over the board. However, the movie, picture, and
decker sets here are quite a bit more simple than in the real eversion.
So it serves as a good model to see how processes work. Here goes.

Starting from the red sphere (Fig. 9.1), a pair of branch points is
introduced (Fig. 9.3) via a bubble move of branch points which is not
discussed in detail here. The branch points move over the maximum
and the minimum between Figs. 9.3 and 9.5. Then they cancel via
a saddle move on branch points between Figs. 9.5 and 9.7. This sets
up a type II bubble move that pushes the sphere to be blue between
Figs. 9.7 and 9.9. Find the corresponding decker sets illustrated in
Figs. 9.2, 9.4, 9.6, 9.8, and 9.10.
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Figure 9.1. A red sphere and its movie

r1 R1

Figure 9.2. The first decker set in the branch point movie
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Figure 9.3. A pair of branch points has been introduced

r1 R1

Figure 9.4. The decker set after branch points are added
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Figure 9.5. The branch points have moved over the optima
and to the right

b1

R1

B1

Figure 9.6. The decker set with branch points on the right
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Figure 9.7. The branch points have canceled

b1

B1

Figure 9.8. The decker set after the branch point cancelation
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Figure 9.9. A type II bubble has turned the sphere blue

b1 B1

Figure 9.10. The decker set of of the blue sphere



Chapter 10

A Physical Metaphor

Throughout recorded history, mathematics has been used to explain
the natural world. Mathematical models can be physical or they
can be metaphysical. That is, mathematics also models hypothetical
universes. The mathematician often engages in a mind game: If the
world were of some specific form, the consequences would be what?
In this chapter, I describe a metaphysical world in which particles
interact along a line, and use that world to construct a universe of 1
spacial dimension and 3 temporal dimensions. At the end of the day,
the sphere eversion is possible in this world. Meanwhile, the particle
interactions, the interactions among interactions, and the interactions
among these, form an algebraic system.

Consider a universe that consists of a vertical line. At any time
in this world, there are a finite number of positively and negatively
charged particles. We want balance in this world, so at any time,
the number of pluses coincides with the number of minuses. There
are three basic types of interactions that occur in time: a pair of
oppositely charged particles are born next to each other, a pair of
oppositely charged particles are annihilated by each other, and any
pair of particles can exchange positions.

Time is schematized to proceed from left to right. The birth of
a pair of particles in which the positive particle is on top is given by
⊂+
−. If the negative particle sits on top, then the symbol is ⊂−+. The
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death of a pair of particles in which the positive particle is on top is
given by +

− ⊃, and if the negative is on top, the symbol is −+ ⊃ . The
interchange of particles is schematized as one of:

• positive particles interchanging position: +
+X

+
+

• negative particles changing position: −−X
−
−

• a negative above a positive changing to a positive above a
negative: −+X

+
−

• a positive above a negative changing to a negative above a
positive: +

−X
−
+

The time-like traces of the motions of such particles are directed line
segments, or more conveniently, arrows. A negatively-charged parti-
cle, at a specific time, is the end point of left pointing arrow towards
the past (← ·) or away from the future (· ←). A positively-charged
particle is the end point of a right pointing arrow (· → or → ·).
The possible universes occur in (1 + 1)-space-time, or a space-time
continuum.

Such universes consists of oriented arcs and circles in the plane.
Let us look at some examples. The most simple of all universes is
the one in which no particles are born nor do any die. It consists a
rectangular strip in the plane devoid of motion and interaction. The
next most simple universes are described by ⊂+

−⊃ and ⊂−+⊃. The
former is a clockwise oriented circle and the latter is counterclockwise
oriented circle.

In the possible universes imaginable, I want to declare a conser-
vation law: The number of particle exchanges (X) is always even.
So it may happen that no particle exchanges exist or there may be
several, but there are always an even number.

What is the set of all possible space-time universes that start from
nothing an end at nothing? It is the set of immersed oriented closed
curves (with possible many distinct circles being immersed) that have
an even number of double points and that have a fixed ordering on
its set of critical events. These events are represented by ⊂, ⊃, and
X. Any still in a movie of our eversion represents one such universe.
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The number of these worlds is, in fact, infinite. To better under-
stand these universes, let us consider how they may be related. For
example, it is possible that certain critical events can occur simulta-
neously. There are two perturbations of such universes in which one
event proceeds another, or vice versa. In the (1 + 1)-space-times, if
two events could occur simultaneously, then we might consider the
two perturbations, one before the other or the other before the one,
to be equivalent. The equivalence between these universes is rep-
resented by one of the critical exchanges which are represented as
possible movie scenes. As another example, the exchange of position
of a pair of charged particles followed by their exchange back, may be
considered to be inconsequential. So an omniscient being observing
two such worlds (one in which a pair of particles remained fixed in
the firmament and the other in which the particles switch back and
forth) would understand the connection between these worlds.

You, the omnicient observer, might observe some other local re-
lationships among possible universes. These (and the ones above) are
related by the scenes: critical point exchange, type II, type III, cusp,
and ψ-bounce. In other words, these (somewhat natural) relation-
ships between (1+1)-dimensional continua correspond to some of the
scenes in a movie. The missing scenes (birth, death, and saddle) also
correspond to relationships among universes which have a somewhat
different nature.

Specifically, the space-time that consists of an oriented (clockwise
or counter-clockwise) circle corresponds to the creation of a pair of
particles followed by their annihilation sometime later. That universe
has substance for some finite period of time, yet the empty universe is
a void. Those two universes seem quite a bit different, but are related
by the birth or death of the circle. George Bailey, the Jimmy Stewart
character in “It’s a Wonderful Life,” realizes that the world with him
in it is qualitatively different from the world without him in it. The
two (1 + 1)-dimensional universes — one without the specific life of
a pair of particles and the other in which these particles are born,
interact, and die — are substantially different.

The saddle relationship in the context of signed particle inter-
actions needs some explication. Consider a (1 + 1)-space-time that
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contains the interaction +
− ⊃ ⊂−+. The saddle relationship converts

that to ←−−→. Such a saddle preserves all of the orientations of the
resulting curves. Also, it has an interesting effect with respect to the
connectivity of the curves: An oriented saddle relationship discon-
nects a single closed curve into two oriented curves, or it connects
two curves into one.

Another context happens in which the relationships: birth, death
and saddle are significantly different than the relationships: cusp,
type II, type III, ψ-bounce, and critical exchange. The latter rela-
tionships satisfy involutive movie moves. For example, a movie that
has a type II scene that creates a pair of double points followed by
their immediate annihilation can be replaced by the movie which is
static in that region. That is the context of the type II bubble move.
On the other hand, a birth followed by a death engenders a sphere.
A sequence of saddles can change such a sphere into a higher genus
surface.

In the discussion of the relationships among (1 + 1)-dimensional
space times, the idea of a (1 + 2)-dimensional space time is becoming
apparent. Here the 2 represents a pair of time-like dimensions. We
consider a universe that consists of (1 + 1)-dimensional space-times
that are interconnected by (oriented) scenes in a movie. The evolution
from an empty space-time to an empty space-time is a continuum of
possible (1+1)-universes connected by the singular (1+1)-dimensional
universes that correspond to the scenes in a movie. The space-time-
time continuum of such worlds is an immersed oriented surface in 3-
space. The additional requirement that the total number of births and
deaths exceeds the number of saddles by 2 ensures that the resulting
surface is a sphere.

It is worthwhile to insert a word of caution here. This theory is
not string theory as it is understood by physicists! It is, however, a
metaphor that oversimplifies the ideas of string theory. The physi-
cists’ theories (for there is more than one string theory) includes extra
structures on the space-time surfaces, and the interactions that I have
described here do not occur in the physicists’ theory precisely because
those theories happen in higher dimensional spaces.
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I hope the next step is obvious. A (1 + 3)-dimensional space-
time-time-time is constructed from the time-like surfaces that inter-
polate between (1 + 1)-dimensional space-time by understanding how
these can be related via the movie-moves. The relationships are the
strongest possible: they do not include births and deaths of spheres;
they do not include handles being attached to the surface; and most
importantly they do not allow the creation or cancelation of branch
points that are only allowed in the context of Chapter 9.

Smale’s theorem in this context says that the (1 + 2)-continuum
that consists of the birth of a counter-clockwise simple closed curve
followed by its death is related by a sequence of movie-moves (as
articulated here) to the (1 + 2)-dimensional continuum that consists
of the birth of a clockwise simple closed curve followed by its death.
The connection between these universes is a 3-dimensional solid (time
thickened sphere) in (1 + 3)-dimensional space. The relationships
between these two movies can be expressed as

[(∅)⇒ (⊂−+⊃)⇒ (∅)] ≡〉[(∅)⇒ (⊂+
−⊃)⇒ (∅)].

Thus, each still in a movie can be given as a symbolic expression. Each
transition between stills can be given as a symbolic expression. And
each transition between movies can be given as a symbolic expression.
There is little rationale here for doing so, but if one were to ask a
machine to manipulate surfaces immersed in space, then one might
want to give the machine such codes, and such “rules for rewriting.”

Gauss-Morse Codes

C. F. Gauss’s life ranges from the last quarter of the 18th century
through the first half of the 19th century. His study of knot theory
appears in his private notebooks. In his musings, he labels each dou-
ble point of the projection of a knot with a letter and then records
a word in the sequence of letters. In the terminology of this book,
the sequence of letters form the double decker set of the immersed
curve. An encoding, called Gauss-Morse codes, of oriented immersed
curves also labels each double point and optimal point. In order to
make such a sequence, a direction for the curve is given, a labeling is
chosen, and an initial point on the curve is chosen thereby giving the
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word a starting point and an ending point (unlike the James Joyce
novel Finnegan’s Wake). On the other hand, the sequence of inter-
section points does occur on the circle, and so the Gauss-code (as it is
now known) is really a cyclic word. Masahico Saito and I use Gauss
codes in conjunction with information about the optima (⊂ or ⊃). So
that on a journey around a curve, Maxima, minima, and crossings are
encountered and recorded in a word that is the Gauss-Morse code.

Marston Morse hails from the first three quarters of the 20th
century. His pioneering study of critical behavior is reflected in every
aspect of this book. In the Gauss-Morse code, Maxima are denoted
with upper case letters and minima with lower case letters. Thus,
Masahico and I pun on the encryption of critical behavior in the
sense of Marson Morse and the code of Samuel Morse. Traditional
Morse code uses longs and shorts to transmit electronic messages
along telegraph wires. The Gauss-Morse code here uses left and right
to distinguish critical behaviors. Samuel’s three quarters of a century
long life encompasses the century prior to the life of Marston.

Since the colors red and blue are associated to the optima, they
are recorded as r, or b for minima and R or B for Maxima. For
example, an immersed curve and its associated Gauss-Morse code is
depicted in Fig. 10.1. The collection of Gauss-Morse codes and their
transitions — under each of the scenes that constitute a movie —
construct, via interpolation, the decker set of each immersed sphere.
Finally, a change between two immersed spheres is encoded by rewrit-
ing the sequence of Gauss-Morse codes associated to the movie of each
sphere, and interpolating between the two sets of codes via the evo-
lution of the decker set as in Chapter 7.

Summary

Starting from a simple-minded physical metaphor, the complications
of the sphere eversion can be constructed as the relationships among
the relationships among 1-dimensional universes with balanced charges
and an even number of particle exchanges. This schema allows the ev-
ersion to be codified in an algebraic fashion. An alternate codification
is used to construct the decker sets and their evolution.
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Figure 10.1. An immersed curve and its Gauss-Morse code
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Chapter 11

Sarah’s Thesis

Sarah Gelsinger’s master’s degree thesis consists of the explicit com-
putation of the topological type of the fold set, the double point set,
the double decker set, and the cusp set of the immersion depicted
here. The original collection of ink and colored pencil drawings of
the sketches for this book spanned a decade’s worth of computations.
Steps are skipped. The computations sometimes proceed from red to
blue, sometimes from blue to red. The pages might be out of order.

A student learns to read her advisor’s mind. Sarah’s contribution
here includes draft drawings of the decker sets and the movies, the
corrections to a number of technical points both in the drawings and
in the mathematics, and the calculations that are described in the
current chapter.

In this chapter, the details of Sarah’s thesis are presented and the
notion of topological type is summarized.

A string that evolves in time sweeps out a surface. The critical
events in the process are births and deaths of loops and the reconnec-
tion between arcs affected by a saddle. Such a surface is an abstract
quantity independent of its relationship with the surrounding envi-
ronment. For example, the double point surface of the eversion is an
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abstract surface that also happens to contain the self-intersections of
the evolving sphere. Similarly, the fold surface is an abstract surface
with seams formed by the evolving cusp set. In general, an abstract
surface can be viewed as the evolution of arcs and loops; sometimes
this viewpoint is useful and sometimes the surface needs to be seen
as an entire entity.

A magnificent theorem of topology allows any surface to be iden-
tified by looking at the number boundary components, the number
of births and deaths, the number of saddles, and whether or not the
surface carries a global notion of left and right. This classification
theorem was used by Sarah to determine the nature of the double
point surface and the fold surface. Sarah’s computation indicates
that the double point surface is non-orientable in the sense that left
and right cannot be chosen in a global sense. In fact, any eversion
has a non-orientable double point surface. The classification theorem
allows one to see which non-orientable surface the double point set
forms.

The archetypical example of surface without a global notion of left
and right is the Möbius band. Every non-orientable surface contains
a Möbius band within it. Therefore, the Möbius band is the most
important example in topology. It is also one of the most written
about examples, and even though you may be familiar with many of
its miraculous properties, there is one that is essential to the current
discussion: a saddle between closed curves that does not change the
number of components is a half-twisted band, and the interpolating
surface therefore contains a Möbius band. Figure 11.1 illustrates.
Each stage in movie of any surface may be oriented, but some saddles
make it impossible to have a consistent orientation from one still to
the next. The figure is drawn with the saddle occurring between the
left and right curves, and the surface is predominantly shaded purple
since such saddles occur on the double point set.

So, while the double point set could be oriented at each stage
of the eversion, there are some type II saddle moves which do not
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Figure 11.1. A Möbius band results when a saddle does not

change the number of components

change the number of circles in the double point set, and consequently
the orientation on the double points cannot be chosen consistently
throughout the eversion. As the sphere morphs from red to blue, the
points at which non-orientable saddles occur on the double point set
are easily identified.

In Sarah’s thesis, the double point set of this eversion is computed
to be non-orientable and to have two births, two deaths, and five
saddles. The classification theorem of surfaces allows us to determine
that the surface can be identified with a sphere that has had three
disks removed and these have been replaced by three Möbius bands.
Such a surface can never be put into 3-dimensional space without
passing through itself. But as the double point set, it does pass
through itself since there are triple points upon it. Its schematic view
is illustrated in Fig. 11.2.
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Figure 11.2. The double point set as an abstract manifold

The fold set of the eversion starts from a red circle of folds and
ends at a blue circle of folds. The fold set is an orientable surface
that has a red and a blue circle forming its boundary. The fold set
intersects itself in space-time at each horizontal type II move. On the
time-elapsed sphere it is embedded. By counting all of the critical
steps in the evolution of the fold set, Sarah determined that the fold
set has the topological type of an annulus or gasket. The time-elapsed
view of the cusp set form a simple closed curve on this annulus. This
is a seam upon which the red fold surface and the blue fold surface
are sewn together. The time-elapsed view of the births, deaths, and
saddles form a pair of arcs on the fold surface. Interestingly, these
arcs change colors at the point of a horizontal cusp.

A tool that aids Sarah’s compuation is the illustration in Fig. 13.4.
which is included in Chapter 13. It represents the time-elasped sum-
mary of all of the critical events in the eversion process. Within the
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illustration, the optimal points, the saddle points, the cusps, the op-
tima of the double points, and the triple points are tracked. The figure
illustrates the profile of the process, and it aids us in envisioning the
eversion process as a single space-time entity.





Chapter 12

The Eversion

In my lectures about this eversion, two senior colleagues, for whom I
have the greatest respect, ask me the same questions, “What is the
guiding principle in this eversion? How do you know you are making
progress? How can you explain what you are doing from a global
perspective?”

The theorem of Banchoff and Max states that every sphere ev-
ersion has a quadruple point. The singular point of Outside-In, for
example, has multiplicity much greater than 4. And Outside-In, al-
though elegant, is highly singular and consequently fine details are
difficult to discern. Starting from the observation that there must be
a quadruple point, the red side of the eversion is defined to be the
sequence of steps before the quadruple point occurs.

In order to create a generic quadruple point, there must be four
triple points interconnected by six arcs of double points such that this
configuration forms a tetrahedron. Four embedded triangles on the
sphere form the tetrahedron. So the goal on the red side is to create
two pairs of triple points and arrange the double point set so that
these four triple points form the boundary of a tetrahedron. This
goal was achieved by watching an animation of the Froisart-Morin
eversion and trying a minor variation of this.

To get to the blue side, pass the triple points through the tetra-
hedron. After the quadruple point, one can recognize that a pair of
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triple points can be easily canceled via a type III-type III move. Now
at that stage, it is easy to be stuck for about two weeks because the
triple points that should cancel are found on different sides of the
sphere and it is not clear how to bring them close enough in a movie
description. Much like a geometric puzzle that is called a quebra de
cabeça in Portuguese, I look at this stage from a variety of points of
view before adding a pair of cusps connected by lips. The folds at the
lips make the surface flexible enough to move the triple points near
each other.

In retrospect, the introduction of lips is clearly necessary. The
fold set of the blue sphere is a blue circle. One of the folds in the
introduced lips eventually evolves into this fold circle. A subsequent
creation of a maximum-saddle pair allows the triple point that is to-
wards the back side of the movies, to move forward. Within the
diagrams, one can see the top portion of the sphere apparently twist-
ing. That twisting action brings the triple points close together so
that they can cancel. The rest of the process becomes quite simple.

During the twisting portion on the blue side, I think that we
are witnessing Thurston’s belt trick occurring. Smale’s original proof
requires some algebraic computations. The fact that a doubly twisted
belt can be undone in the space of rotations of space is an ingredient
in Smale’s proof. So I expect that one can see a belt trick in every
eversion. Others whom I know also believe this is true. The beginning
mathematician who is reading this may wish to prove the general
statement.

The text now turns to illustrating each step in the eversion. Num-
bers 1, 2, 3, etc indicate arcs of double points. A lower case r indicates
a red fold on the left, the upper case R indicates a red fold on the
right, a lower case b indicates a blue fold on the left, and B indicates
a blue fold on the right. Indices are carried forward from still to still
and from picture to picture. Odd numbered pages contain the movie
and projection of the sphere onto the plane. The left illustration in-
dicates a semi-transparent view, the center picture indicates the folds
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and double points, and the right picture illustrates the surface as it
would appear with all surfaces opaque. Line thickness and degrees of
transparency indicate the number of veils of surface between you and
the segment in question. Surfaces below the first depth are shaded
with the color that faces you. But not every surface facing you is col-
ored. The coloration is chosen to suggest the surface underneath, but
sometime colors are removed for clarity. I do not have a consistent
degree of transparency and choice of layer that conveyed the surfaces
as I conceived them. All the information can be obtained from the
associated movie.

The indices of the double points and the fold arcs are inherited
from the original hand-drawn illustrations. These are indicated on the
top of the figure. The number choices 1,2, etc. of double point arc
labels were made at the time of the illustrations thinking of the movie
starting at the top. Thus 1 and 2 die together and interactions and
changes occur earlier in time. As the eversion progresses sequential
numberings of arcs that are born together rarely occur.

On the odd numbered pages the decker sets are illustrated. The
indexes on the decker here coincide with those in the movies and on
the surfaces. Each arc of double points forms a pair of arcs on the
double decker surface.
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r1 R1

R1r1

The eversion starts at a red sphere. The next stage is the intro-
duction of a pair of red lips with the visible fold on the left.
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r1 R1

r2

B1

r1 R1

r2 B2

This is illustration red # 2. The next stage is the introduction
of a loop of double points via a type II bubble move.
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r1 R1

r2

2 1

B1

r1 R1

B1r2
2 1

This is illustration red # 3. In the next stage, there is a critical
exchange between the double point arc labeled 1 and the red fold r1.
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r1 R1
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r1 R1
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This is illustration red # 4. In the next stage, there is a ψ,ψ-move
between double point arc 1 and blue fold B1
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This is illustration red # 5. In the next stage, the blue fold B1
peeks out on the right of R1 by a canceling pair of critical exchanges.
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This is illustration red # 6. In the next stage, a type II bubble
move occurs on the right introducing a loop of double points with
labels 3 and 4.
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r1 R1
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r1 R1

B1
r2

2 1

3 4

This is illustration red # 7. In the next stage, the double point
arc 3 hides behind fold R1, arc 2 hides behind fold r2 via two pairs of
critical exchanges; immediately thereafter a pair of triple points will
be introduced by a type III-type III move.
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This is illustration red # 8. In the next stage, the double point
arc 2 will bounce to the front of R1 via a ψ,ψ-move that occurs in
the region between the two triple points. The fold r1 moves behind
the fold r2 by a critical exchange.
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This is illustration red # 9. In the next stage, in the region
between triple points, the double point arc 1 exchanges horizontal
positions with the double point arc 3 and then bounces to the front
of R1 via a ψ,ψ-move. In this way, an arc of R1 will lie behind the
rest of the immersed sphere.
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This is illustration red # 10. In the next stage, the double point
arc 1 will bounce to the front of R1 at the bottom via a ψ,ψ-move
at the bottom of the illustration. Observe that within the movie, the
migration of fold r2 towards the left occurs simultaneously with some
other events.
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This is illustration red # 11. In the next stage, the double point
arc 2 moves to the right of arc 1 at the bottom of the figure and then
also bounce to the front of R1 via a ψ,ψ-move at the bottom of the
illustration.
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This is illustration red # 12. In the next stage, the triple point at
the bottom passes to the front of fold R1, fold r1 no longer exchanges
places with r2, and redundant bounces on the bottom are removed.
The birth of double points 1 and 2 at the bottom move earlier than
the cusp between r2 and B1.
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This is illustration red # 13. In the next stage, a horizontal type
II move occurs at the bottom, the birth of the double points 1 and
2 hides behind the fold r2 and ψ,ψ-moves are performed to remove
redundant bounces.
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This is illustration red # 14. In the next stage, fold r2 crosses
back to the left of r1, a ψ,ψ-move occurs between fold r1 and double
point arc 3, and a type II saddle occurs on arcs 1 and 3. The sequence
of moves is possible since the bounces on fold r1 can interchange
positions with those on fold B1.
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This is illustration red # 15. In the next stage, the bottom triple
point moves to the inside of fold r1.
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Notice on the decker set here, the arcs connecting 1 and 3 pass
to the back of the sphere.
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This is illustration red # 16. In the next stage, a beak-to-beak
move occurs at the bottom between folds r1 and B1.
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This is illustration red # 17. In the next stage, a swallow-tail
move occurs at the bottom.
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This is illustration red # 18. In the next stage, the double point
arc labeled 2 bounces to the other side of the bottom most cusp.
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This is illustration red # 19. In the next stage, a ψ,ψ-move
removes the redundant bounce between double point arc 2 and the
fold r1.
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This is illustration red # 20. In the next stage, a ψ,ψ-move
occurs below the top triple point. The double point arc 3 bounces in
front of the fold r2 and a subsequent horizontal type II move occurs
at the same place.
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This is illustration red # 21. In the next stage, a type II saddle
move occurs between the arcs 3 and 2 between the triple points.
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This is illustration red # 22. In the next stage, a type II zig-zag
move occurs on the central tube, and a ψ,ψ-move cancels the two
bounces between double point arc 1 and fold r1.
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This is illustration red # 23. In the next stage, the type II birth
of 1 and 3 (reading from the bottom) occurs below the death of 5 and
6 via a critical exchange. Both events lie between the triple points.
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A re-ordering of the Gauss-Morse codes at the top and bottom
has caused the red folds to swing over the top and bottom of the eggs.
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This is illustration red # 24. In the next stage, a type III-type
III move occurs to create a pair of triple points and the bottom triple
point bounces past the type II birth.
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This is illustration red # 25. In the next stage, the triple point
among double point arcs 2, 4, and 6 at the right bottom passes over
the fold R1, and R1 stays to the far right before the death of double
points 3 and 4.
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In the next decker set, the double point between arcs 1 and 5 moves
from the right side of the egg to the left side. This double point
corresponds to the 1, 5, 6 triple point that is the bottom-most.
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This is illustration red # 26. In the next stage, there is a triple
point bounce between the death of double point arcs 5 and 6. The
triple point 246 becomes 245.
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This is illustration red # 27. In the next stage, triple point 123
passes to the front of the blue fold b1.
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This is illustration red # 28. In the next stage, the quadruple
point move occurs among the 4 triple points, and the tetrahedron in
the center of the figure appears to turn inside-out. At that time, the
sphere has turned blue.
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This is illustration blue # 53. In the next stage, double point arc
6 bounces over the fold B1 via a ψ,ψ-move.
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This is illustration blue # 52. In the next stage, the combination
of a pair of type II zig-zag moves and a type II saddle occurs to
cancel the min towards the top of the figure, and the Max towards
the bottom.
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This is illustration blue # 51. In the next stage, a horizontal type
II move occurs among double point arc 7, the fold B1, and the fold
R1. The resulting two veiled bounces between 7 and R1 are canceled
via a ψ,ψ-move.
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This is illustration blue # 50. In the next stage, the double point
arc 1 moves to the other side of the top red cusp, and the pair of
bounces between 1 and r1 are canceled by a ψ,ψ-move.
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This is illustration blue # 49. In the next stage, the triple point
157 bounces to the right of the death of 7 and 8 to become 158.
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This is illustration blue # 48. In the next stage, the death of 7
against 8 moves above the death 5 against 6.
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This is illustration blue # 47. In the next stage, the triple point
158 bounces to the right of the death of 5 and 6 to become 168.
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This is illustration blue # 46. In the next stage, the pair of triple
points on the right of the illustration of the form 168 cancel via a
type III-type III move.
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This is illustration blue # 45. In the next stage, the death of
5 against 6 moves below the birth of 3 and 8, and a lips occurs to
induce a visible left blue fold after the birth of 1 and 7.
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This is illustration blue # 44. In the next stage, the top cusp
between b2 and R2 moves up the surface towards the triple point
347. The blue fold b2 moves to the left of the double curve 7 and the
red fold.
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This is illustration blue # 43. In the next stage, a pair of cancel-
ing critical points (saddle and minimum) is created on the blue arc b2
and the minimum is pushed to the bottom of the figure. The saddle
is visible and represents the birth of fold arcs B2 on the left and b3
on the right.
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Watch the decker set in the next illustration carefully. Items on
the left move around the back to reappear on the right. A saddle
point/minimun pair of critical points is created towards the bottom.
The items on the right pendent form the 245 triple point on the blue
foot that protrudes on the left on the corresponding chart.
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This is illustration blue # 42. In the next stage, a horizontal
cusp change occurs along the cusp R2/b3, and this event is pushed
towards the top of the illustration. Blue fold B2 veils portions on the
left, and other critical levels are interchanged.
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This is illustration blue # 41. In the next stage, a ψ,ψ-move
occurs between the double point curve 1 and the fold r3.



12. The Eversion 187

r1R1

2

B1

21
1

r2

3 4
4 3

5 6 5 6

78 7 8

b2

R2

B2

r3



188 12. The Eversion

r3

B2

r1 R1

r2
2

3 4

B1
1

5 6

R1r1

2 1

r2
B1

3 4

87

87

b2
R2

R2b2

r3 B2

This is illustration blue # 40. In the next stage, the type II move
birth of 17 passes through the saddle point that is the birth of R2, r3.
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This is illustration blue # 39. In the next stage, the ψ-move
between the double point arc 7 and the red fold R2 moves through
the cusp.
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This is illustration blue # 38. In the next stage, a canceling pair
of critical points is added along red fold R2, the maximum moves
above the cusp b2/R2, and a horizontal cusp occurs between this
cusp and the newly introduced folds at the saddle points. The new
critical points are labeled in the movie and the decker set but not in
the chart since there is little space to indicate them in this figure.
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In the next decker set, arcs 1, 2, B2, r3, and R1 are passed to the
right of the figure, and a pair of canceling critical points are added to
the ambient sphere.
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This is illustration blue # 37. In the next stage, a swallow-tail
is added on the red arc r2. There is no need to indicate the name of
the blue arc that is introduced.
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This is illustration blue # 36. In the next stage, a beak-to-beak
move cancels the pair of cusps on the back of the figure.
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This is illustration blue # 35. In the next stage, the ψ-move on
the upper right between double point arc 1 and fold r3 passes through
the cusp between r3 and B2 to become a ψ-move between B2 and 1.
The local red maximum in back cancels with the saddle between R2
and r3, and the fold r3 moves to the far left.
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This is illustration blue # 34. In the next stage, the following
sequence occurs: a ψ,ψ-move occurs between the fold b2 and double
point arc 4, the triple point 348 bounces over the birth of 38 and
moves behind the fold b2, and the top bounce between 4 and b2 moves
over the saddle death of B3/b2. Some vertical positions interchange
height.
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This is illustration blue # 33. In the next stage, the ψ-move
between arc 3 and fold r2 moves through the cusp B4/r2 to become
a bounce between B4 and double point arc 4.
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This is illustration blue # 32. In the next stage, the pair of ψ-
moves between B4 and double point arc 4 are canceled. The death
of 34 moves above the B1/r2 cusp.
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This is illustration blue # 31. In the next stage, a type II saddle
move occurs between the double point arcs 1 and 4.
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This is illustration blue # 30. In the next stage, a type II zig-
zag move cancels the vestigial death of 34. The remaining death is
renumbered.
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This is illustration blue # 29. In the next stage, the bounce
between 1 and r3 moves over the cuspidal birth of r3 and R1, and a
canceling pair of death and saddle occurs along on the blue curve B2.
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This is illustration blue # 28. In the next stage, a horizontal cusp
occurs on the upper left.
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This is illustration blue # 27. In the next stage, the two saddle
points interchange heights.
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The decker set in the next illustration, is a quite complicated defor-
mation of that in this illustration. In fact, I spent more time on these
two decker sets than every other decker illustration. It takes a great
deal of patience to see that there is a deformation between them.
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This is illustration blue # 26. In the next stage, the bounce
between the birth of 18 and the arc r3 passes over the saddle. Then
there is a critical cancellations between the birth of r3−R1 and the
saddle R4− r3.
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This is illustration blue # 25. In the next stage, the birth of
double points 1 and 8 cancel, via a type II zig-zag move with the
death of 1 and 2.
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This is illustration blue # 24. In the next stage, blue fold b2
peeks out from behind fold b3 on the left and the birth of double
point arc 47 bounces to the left of the triple point.
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This is illustration blue # 23. In the next stage, double point arc
8 and fold b3 undergo a ψ,ψ-move.
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This is illustration blue # 22. In the next stage, the death of
double arcs 5 and 6 moves up while the double point arc 7 acquires
a zig-zag bend (type II zig-zag) with a birth and arc labeled 0 and a
relabeling of arc 7 by the number 9.
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This is illustration blue # 21. In the next stage, the death of
double arcs 5 and 6 cancels with the birth of 07 by a type II saddle
move.
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This is illustration blue # 20. In the next stage, a horizontal type
II move occurs and type II zig-zig move cancels the spurious death
09 against the birth of 39.
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This is illustration blue # 19. In the next stage, the top triple
point 348 passes over the fold b3, and various heights are readjusted.
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This is illustration blue # 18. In the next stage, the bottom triple
point 348 passes to the other side of the fold b2.
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This is illustration blue # 17. In the next stage, a horizontal type
II move occurs at the bottom and a ψ,ψ-move cancels the redundant
bounces.
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This is illustration blue # 16. In the next stage, the two triple
points cancel.
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This is illustration blue # 15. In the next stage, double point arc
4 bounces to the other side of the b3 R1 cusp. The cusp moves to the
right.
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This is illustration blue # 14. In the next stage, a horizontal type
II move occurs at the birth of 78 and the birth of 34 becomes visible.
Heights are adjusted.
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This is illustration blue # 13. In the next stage, two ψ,ψ-moves
eliminate the extra bounces between double loop 78 and the folds.
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This is illustration blue # 12. In the next stage, the loop 78 of
double points vanishes by a type II bubble move.
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This is illustration blue # 11. In the next stage, a horizontal cusp
move occurs at r2, B4 thereby turning the saddle red.
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This is illustration blue # 10. In the next stage, a beak-to-beak
move breaks the folds b3 and R5.
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This is illustration blue # 9. In the next stage, a swallow-tail
move connects the blue folds b2 and b3.



12. The Eversion 251

r2

B2 b3 r1

3

B1b2

34 4

R1

B2

B1

R5



252 12. The Eversion

r1
R1

r2

3
4

B1b2

B2

R1r1

3 4

B2
b3

b3

r2 B1

b2
R5

This is illustration blue # 8. In the next stage, the bounce be-
tween R1 and 4 moves over the death of 34 and down the left double
point arc. The red death at the top moves below the blue death.
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This is illustration blue # 7. In the next stage, a ψ,ψ-move
removes the vestigial double bounce.



12. The Eversion 255

r2

B2
b3

r1
3

B1

b2

34

4

R1

B2

R5



256 12. The Eversion

r1 R1

r2

3 4

B1b2

B2
R1r1

3 4

B2

b3

b3

r2 B1

b2 R5

This is illustration blue # 6. In the next stage, the double curve
34 is removed by a type II bubble move.
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This is illustration blue # 5. In the next stage, a horizontal cusp
move occurs on the left.
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This is illustration blue # 4. In the next stage, a swallow-tail
move cancels the two cusps in the middle.
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This is illustration blue # 3. In the next stage, another horizontal
cusp occurs followed by a critical cancelation of a red saddle and the
red maximum.
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This is illustration blue # 2. In the next stage, a lips move cancels
the pair of cusps in the middle.
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This is illustration blue # 1. The sphere is round and blue.
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Chapter 13

The Double Point and
Fold Surfaces

The double point set and the fold set of the eversion as it evolves
are both surfaces immersed in space-time. Recall that a surface is
immersed if every point has a neighborhood upon which the tangent
plane provides a good approximation. So in this neighborhood the
surface is embedded, but another neighborhood may overlap the sur-
face within space-time.

The central illustrations on the even numbered pages above are
conceived of as movie cross sections to these surfaces. So we can use
the techniques of movies to interpolate the surfaces between successive
pages. There are several ideas to discuss.

First, the double point surface is not in general position since
it has triple points. In a neighborhood of the triple point arc three
sheets of the double point set intersect. The situation is illustrated
in Fig. 13.1. As the triple points evolve, an arc of triple points is
interpolated between successive pages as the figure indicates.

Second, the critical points of the curves on the pages evolve to
be critical arcs for the surfaces. Let us consider the fold set initially.
The critical points are the maxima, minima, saddles, and cusps of
the fold lines. A change in the fold set (such as a lips move, beak-to-
beak, horizontal cusp, creation of a canceling pair of critical points, or
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Figure 13.1. Three sheets of double points intersect along
an arc of triple points

the cancelation thereof) induces a critical point in the interpolating
surface that can be seen as a critical point on the critical arc. These
critical arcs envelope the time-elapsed fold surface.

An illustration of the time-elapsed fold set is indicated in Fig. 13.3
that tracks all the critical changes of the fold set from the red illustra-
tion to the blue illustration. Note that in this figure, I am breaking
with top/right, bottom/left conventions. So the initial maximum of
the red sphere appears on the left of the figure.

Meanwhile, the critical points of the double point set on a single
page consist of type II moves, triple points, and (should we care to
keep track of them) the ψ moves upon which the double points bounce
over the folds. The type II bubble, saddle, and zig-zag moves, for
example, each induces a change in the critical behavior between pages.

Figure 13.4 illustrates the critical evolution of these two surfaces
together. The figure represents the tool that Sarah used in rechecking
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Figure 13.2. The time-elasped view of the critical points of

the fold set

the computation of her thesis. She meticulously sketched out this
figure on an extended sheet of graph paper.

The color coding indicates: (1) the color of the optimum, saddle,
or fold during the process, (2) the color of the cusp set during the
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Figure 13.3. The time-elasped view of the critical points of

the double point set

process, (3) the triple points are colored green for no particular reason.
The cusps are either red or blue, but since a cusp is a convergence
of a red fold and a blue fold, the cusps are shaded different tints of
purple depending on which fold is more visible.
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Small words indicate the nature the critical event that occurs
between pages. The relative vertical position of the critical events
should roughly correspond to the height on the page at which these
incidents occur.
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Figure 13.4. Tracking the critical behavior of the folds, dou-

ble points, and triple points
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The next step in depicting these surfaces is to interpolate the
surfaces between successive pages. For the double point surface, a
rough sketch of this interpolation appears in Fig. 13.5 for the pages
between illustration red # 28 and blue # 53. Within this illustration
alone there are several sheets that overlap. Some more information
could be given that indicates a 4th dimension which coincides with
the original opacities of the double point arcs (and thus with the dis-
tance in 3-dimensional space towards the page). Figure 13.6 depicts
a similar situation for the fold surfaces among the pages blue # 37
(shown on the left) through and blue # 34 (on the right).

Figure 13.5. Interpolating the double point surface on either

side of the quadruple point
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All good mathematics books contain exercises. These are items
that the author can do, but might not want to. These last two illus-
trations are drawn at the edges of my ability. So my exercise to you,
the reader, is to create an aesthetically pleasing set of illustrations
that depicts the total double point surface and the fold surface for
the eversion.

Figure 13.6. Interpolating the fold surface between blue #
37 and blue # 34

Conclusion

Mathematicians speak of their work and the works of each other in
terms of beauty. That the sphere can be turned inside-out while
preserving its tangent planes is a “beautiful theorem.” To witness the
eversion via any of the great animations that have been produced
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is exhilarating. To have performed this eversion with this degree
of detail has been a happy time in my life. Here each step can be
examined.

However, it is not enough to reproduce another example. The
example here is a very important one. For example, it describes, to
the initiated, a method of mapping a very high dimensional sphere
to a sphere of three smaller dimensions. The double point surface
contains important information about the global eversion. The triple
point set can be framed by the vectors perpendicular to the three
sheets that intersect. The frame twists as it travels around the four
loops of the triple point set even though the journey runs straight
through the quadruple point.

Finally, I want to leave you with an exercise that I think I know
how to solve, but for which I have not been able to provide all the
details. Any 2-dimensional sphere that has been immersed in space
can be thought of as the image of a sphere that is red on the outside
and blue on the inside. There are two ways to move that sphere to
an embedded sphere: one is red, the other is blue. The motion to
one of these spheres does not have a quadruple point in the process.
Say that the given sphere is one color or the other is there is a way of
deforming it to an embedded sphere of that color through immersions
that do not have a quadruple point. How can you look at an immersed
sphere and tell which color it is?
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