1. **5 points** In the Figure below one of the graphs represents a function; the other represents its derivative. Which is which and why?

![Graphs](image)

2. Compute $f'(x)$ or $\frac{dy}{dx}$ derivatives of the following (5 points each):

 (a) $f(x) = -x^2 + 4x + 5$
 (b) $y = \sin(2x)$
 (c) $y = \sqrt{x^3 + 3x - 4}$
 (d) $f(x) = e^{x^2+1}$
 (e) $f(x) = \ln(\cos(x))$
 (f) $xy - y^3 = 5$

3. Compute the limit of the Newton quotient for the function 5 points:

 $$f(x) = \sqrt{x - 2}$$

4. Compute the following limits 5 points:

 (a) $$\lim_{x \to 0} \frac{e^x - 1}{x}$$
 (b) $$\lim_{x \to 9} \frac{x^2 - 81}{x - 9}$$
 (c) $$\lim_{x \to \infty} \frac{x^3 - 4x^2 - 5x + 13}{34x^4 + 18x^3 - 2x^2 - 405x - 37}$$

5. **5 points** Prove by induction,

 $$1^2 + 2^2 + \cdots + N^2 = \frac{(N)(N+1)(2N+1)}{6}.$$
6. 10 points A projectile is shot upward from the edge of a 20 meter cliff and moves vertically along a straight line according to the equation,

\[s(t) = -5t^2 + 45t + 20 \]

where \(t \geq 0 \) is measured in seconds, and the vertical position, \(s \), is measured in meters.

(a) Sketch a graph of the position as a function of time. Include an appropriate domain.

(b) When does the projectile reach its highest point?

(c) What is the velocity of the projectile as it hits the ground (\(s(t) = 0 \))?

(d) When does the projectile pass the edge of the cliff?

7. 10 points Sketch the graph of the function

\[f(x) = \frac{1}{x^2 + 1} \]

include critical point(s), inflection points, and any asymptotic behavior.

8. 10 points Sand falls in a conical pile at a constant rate of 3 cubic meters per second. The radius of the cone is always twice the height. How fast is the height increasing when the height is 4 meters? (Hint: The volume of a cone is given by \(V = \frac{\pi}{3}r^2h \)

9. 10 points Show that among all the rectangles that are inscribed in a circle of radius 1 the rectangle that has the maximum area is a square. Hint: Use a cartesian coordinate system.

10. 10 points Use your calculator to ESTIMATE

\[\int_1^2 \ln x \, dx \]

By subdividing the interval \([0, 1]\) into 5 subintervals of length \(1/5\).

11. 10 points Compute the equation of the line tangent to the curve, \(y = \cos(x) \) at the point \((\pi/6, \sqrt{3}/2)\).

12. 5 points each

(a) Define \(\int_a^b f(x) \, dx \)

(b) State the Fundamental Theorem of Calculus
13. 5 points each Compute the following anti-derivatives and definite integrals

(a) \[\int_{0}^{\pi/4} \sec^2(x) \, dx \]

(b) \[\int x(x^2 + x^{1/2}) \, dx \]

(c) \[\int_{2}^{5} x^4 \, dx \]

(d) \[\int_{2}^{3} \frac{dx}{x} \]