Math 227 Carter Sample for test 3

By popular request, I am preparing a sample study guide. The first question is familiar, but now more questions are attached. A problem such as this will be a substantial portion of the test. The remaining integrals should be as straight forward, but not identical to those listed here.

1. Consider the quadratic surface \(f(x, y) = (x - 5)^2 - (y - 12)^2 \).

 (a) Sketch the \(z = 0 \), \(z = -1 \), and \(z = 1 \) levels of the surface.

 (b) Compute the gradient \(\vec{\nabla} f \).

 (c) Find the critical point(s) of \(f(x, y) \).

 (d) Compute the determinant of the Hessian \(H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} \) at the critical point.

 (e) Is the critical point a local maximum, minimum, or neither? Explain why?

 (f) Sketch the gradient vector field at appropriate points.

 (g) Compute the work done in moving a particle once around a circle \(x^2 + y^2 = 4 \) in the gradient field.

2. Calculate the volume that is enclosed by the sphere \(x^2 + y^2 + z^2 = 25 \) and the cylinder \(x^2 + y^2 \leq 1 \).

3. Set up an integral that computes the surface area of the region of a sphere \(x^2 + y^2 + z^2 = a^2 \) that lies above the circle \(r = a \cos(\theta) \).

4. Compute the line integral \(\int_C zdx + xdy + ydz \) over the curve \(x = t^2, y = t^3, \) and \(z = t^2 \) for \(t \in [0, 1] \).

5. Determine whether or not \(\vec{F} \) is conservative. If so, find a potential function.

 \[\vec{F}(x, y) = (6x + 5y)\mathbf{i} + (5x + 6y)\mathbf{j} \]