1. (8 points each) Compute the following:

(a) \[\int x \ln(x) \, dx \]

(b) \[\int \frac{1}{1 + x^2} \, dx \]

(c) \[\int e^x \sin(x) \, dx \]

(d) \[\int \sin^3(x) \, dx \]

(e) \[\int \frac{1}{x^2 + 3x + 2} \, dx \]

(f) \[\int_1^\infty \frac{dx}{x} \]

2. (7 points) Define \[\lim_{n \to \infty} a_n = L. \]

3. (10 points) Compute the arc length \(\int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx \) of \(f(x) = x^{3/2} \) for \(x \in [1, 2] \).

4. (10 points) Compute the volume of the solid obtained by rotating the region bounded by \(y = x^2 \) and \(y = x \) about the \(y \)-axis.
5. (10 points) Compute the centroid of the region that is bounded by $y = x^2$ and $y = \sqrt{x}$.

Note that if $f_1(x) \leq f_2(x)$, then

$$x_{\text{CM}} = \frac{\rho \int_a^b x(f_2(x) - f_1(x)) \, dx}{\rho \int_a^b (f_2(x) - f_1(x)) \, dx}$$

and

$$y_{\text{CM}} = \frac{1}{2} \frac{\rho \int_a^b ((f_2(x))^2 - (f_1(x))^2) \, dx}{\rho \int_a^b (f_2(x) - f_1(x)) \, dx}$$

where ρ indicates the density measured in mass per unit area. An alternate formula for y_{CM} is

$$x_{\text{CM}} = \frac{\rho \int_a^b y(g_2(y) - g_1(y)) \, dy}{\rho \int_a^b (g_2(y) - g_1(y)) \, dy}$$

Where the region is bounded by $x = g_1(y)$ and $x = g_2(y)$ for $g_1(x) \leq g_2(x)$.

6. (10 points) Compute the (Taylor) MacLaurin polynomial $T_5(x) = \sum_{j=0}^{5} \frac{f^{(j)}(a)}{j!} (x - a)^j$ of the indicated function at the point a.

$$f(x) = e^x; a = 0.$$
General Instructions: In this document you will find 4 separate sample tests. The actual test will be similar in format to any one of these tests. I anticipate making the problem difficulty level about the same as it is here. But I cannot always guarantee the difficulty level. I strongly suggest that you make yourself a 5th test of the same format; include problems at this level of difficulty and a few problems that are more difficult.

1. (8 points each) Compute the following:
 (a) \[\int xe^{4x} \, dx \]
 (b) \[\int \sqrt{4 - x^2} \, dx \]
 (c) \[\int e^{2x} \cos(x) \, dx \]
 (d) \[\int \cos^3(x) \, dx \]
 (e) \[\int \frac{1}{x^2 - 4x + 3} \, dx \]
 (f) \[\int_0^1 \frac{dx}{\sqrt{x}} \]

2. (7 points) Define \[\lim_{n \to \infty} a_n = L. \]

3. (10 points) Compute the arc length \(\int_a^b \sqrt{1 + (f'(x))^2} \, dx \) of \(f(x) = \ln \cos(x) \) for \(x \in [0, \pi/4] \).

4. (10 points) Compute the volume of the solid obtained by rotating the region bounded by \(y = x^2 \) and \(y = \sqrt{x} \) about the y-axis.

5. (10 points) Assuming a spring constant of \(k = 400 \text{ kg/sec}^2 \), compute the work in Joules (kilogram meter-squared per second-squared) that is required to stretch the spring 10 centimeters beyond equilibrium.
6. (10 points) Compute the (Taylor) MacLaurin polynomial \(T_5(x) = \sum_{j=0}^{5} \frac{f^{(j)}(a)}{j!} (x - a)^j \) of the indicated function at the point \(a \).

\[
f(x) = \sin(x); \ a = 0.
\]
Math 126 Carter Sample Test 2 (version c) Spring 2011

General Instructions: In this document you will find 4 separate sample tests. The actual test will be similar in format to any one of these tests. I anticipate making the problem difficulty level about the same as it is here. But I cannot always guaranty the difficulty level. I strongly suggest that you make yourself a 5th test of the same format; include problems at this level of difficulty and a few problems that are more difficult.

1. (8 points each) Compute the following:

 (a) \[\int x \cos(2x) \, dx \]
 (b) \[\int t \sqrt{1 - t^2} \, dt \]
 (c) \[\int \sec^3(x) \, dx \]
 (d) \[\int \sec^2(x) \, dx \]
 (e) \[\int \frac{1}{x^2 + x + 1} \, dx \]
 (f) \[\int_{1}^{\infty} \frac{dx}{x^{3/2}} \]

2. (7 points) Define \[\lim_{n \to \infty} a_n = L. \]

3. (10 points) Compute the arc length \(\int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx \) of \(f(x) = 9 - 3x \) for \(x \in [1, 3] \).

4. (10 points) Compute the volume of the solid obtained by rotating the region bounded by
\(y = x^2 \) and \(y = \sqrt{x} \) about the \(x \)-axis.

5. (10 points) Compute the work needed in building a brick (density 80 pounds per cubic-foot) structure that is a tower of height 20 feet and square base of side 10 feet.

6. (10 points) Compute the (Taylor) MacLaurin polynomial \(T_5(x) = \sum_{j=0}^{5} \frac{f^{(j)}(a)}{j!}(x - a)^j \) of the indicated function at the point \(a \).

 \[f(x) = \cos(x); \ a = 0. \]
General Instructions: In this document you will find 4 separate sample tests. The actual test will be similar in format to any one of these tests. I anticipate making the problem difficulty level about the same as it is here. But I cannot always guarantee the difficulty level. I strongly suggest that you make yourself a 5th test of the same format; include problems at this level of difficulty and a few problems that are more difficult.

1. (8 points each) Compute the following:
 (a) \(\int x \sin(3x) \, dx \)
 (b) \(\int \frac{1}{\sqrt{1 - x^2}} \, dx \)
 (c) \(\int e^x \sin(3x) \, dx \)
 (d) \(\int \tan^2(x) \, dx \)
 (e) \(\int \frac{1}{x(x-1)^2} \, dx \)
 (f) \(\int_1^\infty x^{-21/20} \, dx \)

2. (7 points) Define \(\lim_{n \to \infty} a_n = L \).

3. (10 points) Compute the arc length \(\int_a^b \sqrt{1 + (f'(x))^2} \, dx \) of \(f(x) = 3x + 1 \) for \(x \in [0, 3] \).

4. (10 points) Compute the volume of the solid obtained by rotating the region bounded by \(y = x^2 \) and \(y = x \) about the \(y \)-axis. \(y = x^2 \) and \(y = x \) about the \(x \)-axis.

5. (10 points) Water has a density of \(10^4 \) kilograms per cubic meter. Compute the force against a metal plate that is submerged in water and that is the shape of an isosceles triangle with base 1 meters and height 2 meter. The vertex is at the water level.

6. (10 points) Compute the (Taylor) MacLaurin polynomial \(T_5(x) = \sum_{j=0}^{5} \frac{f^{(j)}(a)}{j!} (x - a)^j \) of the indicated function at the point \(a \).

\(f(x) = \ln(x + 1); a = 0 \).