The derivatives for different functions are indicated below. For each indicate:

- the critical points of \(f \);
- the intervals upon which \(f \) is increasing or decreasing;
- the local maxima and local minima of \(f(x) \).

1. \[f'(x) = (x + 2)(x - 1). \]

Solution. A sign chart for the derivative indicates that \(0 < f'(x) \) whenever, \(x \in (-\infty, -2) \cup (1, \infty) \). Meanwhile \(f'(x) < 0 \) for \(x \in (-2, 1) \). Thus \(f(x) \) is increasing on \(x \in (-\infty, -2) \cup (1, \infty) \), and \(f(x) \) is decreasing for \(x \in (-2, 1) \). The critical point \(x = -2 \) yields a local Maximum. The critical point \(x = 1 \) yields a local minimum.

2. \[f'(x) = (x + 5)(x + 1)(x - 7). \]

Solution. A sign chart for the derivative indicates that \(f'(x) < 0 \) whenever, \(x \in (-\infty, -5) \cup (-1, 7) \). Meanwhile \(0 < f'(x) \) for \(x \in (-5, -1) \cup (7, \infty) \). Thus \(f(x) \) is increasing on \(x \in (-5, -1) \cup (7, \infty) \), and \(f(x) \) is decreasing for \(x \in (-\infty, -5) \cup (-1, 7) \). The critical point \(x = -1 \) yields a local Maximum. The critical points \(x = -5 \) and \(x = 7 \) yield local minima.

3. \[f'(x) = (x - 1)e^{-x}. \]

Solution. First observe that \(0 < e^{-x} \) for all \(x \in \mathbb{R} \). So we only have to look at the signs for the factor \((x - 1) \). The point \(x = 1 \) is a critical point that is a local minimum. The function \(f(x) \) is decreasing for \(x < 1 \), and the function \(f(x) \) is increasing for \(1 < x \).
Name ________________________________