1. Calculate the derivatives of the following functions using any method. (10 points)

 a. \(y = (x^3 + 2x + \pi)^7 \)

 b. \(y = \frac{x + \sqrt{x} + \sqrt[4]{2x^3}}{x^3} \)

 c. \(y = \sin(\sin(\pi x + 2)) \)
2. Calculate the derivatives of the following functions using any method. (10 points)

 a. \(y = e^{-3x^2 + 4x - 1} \)

 b. \(y = x \ln(x) \)

 c. \(y = 3^{2x} \cos(x) \)

3. Find the derivative of \(f(x) = \frac{1}{x} \) using the limit definition of the derivative. (No points will be given if you do not use the limit definition.) (5 points)

4. Using the derivatives \(\frac{d}{dx} \sin(x) = \cos(x) \) and \(\frac{d}{dx} \cos(x) = -\sin(x) \), show that the derivative of \(\tan(x) \) is \(\sec^2(x) \). (5 points)
5. Consider the curve with equation \(xy^2 = 9 \cos y \). Find \(\frac{dy}{dx} \) using implicit differentiation and then find the equation of the tangent line through the point \((0, \frac{\pi}{2}) \). (10 points)

6. The volume \(V \) of a sphere is \(V = \frac{4}{3} \pi r^3 \). If the radius of a sphere is increasing at the rate of 8 inches per minute when the radius is 5 inches, how fast is the volume of the balloon increasing? (5 points)