SELF-EXTENSIONS FOR THE FINITE SYMPLECTIC GROUPS VIA RELATED EXTENSIONS FOR THE FROBENIUS KERNELS

CORNELIUS PILLEN

Abstract. For large primes it was shown in [BNP1, BNP3] that a finite group of Lie Type does not admit self-extensions, i.e. non-trivial extensions of a simple module with itself, unless the group is one of the symplectic groups $Sp_{2n}(F_p)$, $n \geq 1$. In this paper it is shown that self-extensions indeed exist for these groups in odd characteristic. In addition, it is shown that these self-extensions are closely related to certain extensions between simple modules for the Frobenius kernel that are exceptional for type C_n.

1 Introduction

1.1 Let G be a connected simply connected almost simple algebraic group defined and split over the field F_p with p elements, and k be the algebraic closure of F_p. Let $G(F_q)$ be the finite Chevalley group consisting of F_q-rational points of G where $q = p^r$ for a positive integer r. Moreover, let G_r be the rth Frobenius kernel.

In 1984 H.H. Andersen [And] showed that Frobenius kernels do not admit self-extensions of simple modules, i.e. non-trivial extensions of a simple module with itself, unless the underlying root system is of type C_n ($n \geq 1$) and the prime is two. In [BNP2] the following generalization of Andersen’s result was given: Given a pair of p-restricted weights λ and μ that are “close”, i.e. $\langle \lambda - \mu, \alpha^\vee \rangle < p/3$ for any root α, then the G and G_1-extensions between two simple modules affording these highest weights coincide, unless G is of type C_n.

The purpose of this paper is to show that such pairs of simple G-modules whose highest weights are “close” but whose G and G_1-extensions differ indeed exist in type C_n. Moreover, it is shown that the constructions of these extensions give rise to self-extensions for the finite group $Sp_{2n}(F_p)$ for odd p and arbitrary rank.

It is well-known that self-extensions of simple modules for the finite Chevalley groups $SL_2(F_p)$ exist for arbitrary primes p. In [Hum1] J.E. Humphreys constructed examples of self-extensions between simple modules for the symplectic groups $Sp_4(F_p)$ with p odd. In the same paper Humphreys conjectured that the root systems of type C_n might be exceptional for the existence of self-extensions. For large primes it was was proved in [BNP1, BNP3] that self-extensions can only exist for type C_n, thus confirming Humphreys’ conjecture.

Here we construct self-extensions for the finite symplectic group of arbitrary rank. One family of self-extensions described in the paper (Proposition 4.3) has been discovered independently by Tiep and Zalesskiı in [TZ] using quite different methods. The ideas used...
in our set up involve extensions between certain pairs of simple G-modules, one restricted and one non-restricted, whose restrictions to the finite group $G(\mathbb{F}_p)$ contain the desired self-extensions as submodules and whose restriction to the Frobenius kernel produce the aforementioned exceptional extensions. Such pairs of weights were also used in the construction in [Hum1].

Unfortunately, the methods used do not allow for a complete classification of self-extensions for finite Chevalley groups. But at least for large primes one obtains additional examples besides the ones in [TZ]. In [BNP1] necessary conditions on the highest weights of potential candidates for self-extensions for the groups $Sp_{2n}(\mathbb{F}_p)$ were given. The highest weight λ of a simple module $L(\lambda)$ has to be “close” to the hyperplane defined via $\langle x + \rho, \alpha_n^\vee \rangle = \frac{p}{2}$. Here α_n denotes the unique long simple root. One might conjecture that any pair of p-restricted weights λ and $\lambda - \frac{1}{2} \alpha_n$ with $\langle \lambda, \alpha_n^\vee \rangle = \frac{p-1}{2}$ should yield a pair of self-extensions for $Sp_{2n}(\mathbb{F}_p)$.

1.2 Notation: G will always denote a connected simply connected almost simple algebraic group that is defined and split over the field \mathbb{F}_p with p elements. k denotes the algebraic closure of \mathbb{F}_p and G_1 is the first Frobenius kernel of G. The conventions in the paper will follow the ones used in [Jan1]. Let T be a maximal torus in G and Φ the associated root system. The positive roots are denoted by Φ^+ and the negative roots by Φ^-. Let B be a Borel subgroup containing T and corresponding to the negative roots. $X(T)$ denotes the weight lattice, $X(T)_+$ the dominant weights, and $X_1(T)$ the p-restricted weights. For a weight $\gamma \in X(T)_+, H^0(\gamma), V(\gamma)$, and $L(\gamma)$ denote the induced module, the Weyl module, and the simple module, respectively.

Starting with Section 2.2, we will assume in addition that G is of type C_n. We follow [Bou, p.254] and denote by $\alpha_i = \epsilon_i - \epsilon_{i+1}$, $1 \leq i < n$, the short simple roots, while $\alpha_n = 2\epsilon_n$ is the unique long simple root. The fundamental weights are $\omega_i = \sum_{k=1}^i \epsilon_k$, with ω_1 being the unique minuscule weight. For convenience we will frequently switch between the ϵ_i, ω_i, and α_i as a basis. The highest short root is $\alpha_0 = \epsilon_1 + \epsilon_2$ and the longest element of the Weyl group W is -1. The simple modules are therefore self-dual and $H^0(\gamma)$ and $V(\gamma)$ are dual to each other.

2 G_1-Extensions between Weyl modules and induced modules

It is well-known that $\text{Ext}^1_{G_1}(V(\mu), H^0(\lambda)) = 0$ for any pair of weights λ, μ. In [And] Andersen proved that $\text{Ext}^1_{G_1}(V(\lambda), H^0(\lambda)) = 0$ unless G is of type C_n and $p = 2$. In [BNP2, 5.2, Prop.(a)] a generalization of Andersen’s result for odd primes was found. It was shown that $\text{Ext}^1_{G_1}(V(\mu), H^0(\lambda))$ vanishes for a pair of restricted weights λ and μ that are “close” (i.e. $\langle \mu - \lambda, \alpha_i^\vee \rangle < p/3$, for any root α), unless G is of type C_n and the weights are reflections of each other across the hyperplane $\langle \gamma + \rho, \alpha_i^\vee \rangle = \frac{p}{2}$. In this section we will show that extensions for such “close” pairs of weights indeed exist for type C_n.

2.1 The following Lemma is well-known. It is included for the benefit of the reader. We will make repeated use of it in later arguments.
Lemma. Let $i > 0$ be an integer, α be a simple root, $\mu \in X(T)_+$, and $\gamma \in X(T)$ with $-p \leq \langle \gamma, \alpha^\vee \rangle \leq -1$ then

$$\text{Ext}^i_B(V(\mu), \gamma) \cong \begin{cases} 0 & \text{if } \langle \gamma, \alpha^\vee \rangle = -1 \\ \text{Ext}^{i-1}(V(\mu), s_\alpha \cdot \gamma) & \text{else.} \end{cases}$$

Proof. We apply the spectral sequence [Jan1, I.4.5]

$$\text{Ext}^i_{P(a)}(V(\mu), R^j \text{ind}^{(a)}_B \gamma) \Rightarrow \text{Ext}^{i+j}_B(V(\mu), \gamma).$$

If $\langle \gamma, \alpha^\vee \rangle = -1$ then $R^j \text{ind}^{(a)}_B \gamma = 0$ for all $j \geq 0$ [Jan1, II.5.2(b)], which forces $\text{Ext}^i_B(V(\mu), \gamma) = 0$ for all $i > 0$.

Otherwise it follows from [Jan1, II.5.2(d)] that

$$\text{Ext}^i_B(V(\mu), \gamma) \cong \text{Ext}^{i-1}(V(\mu), R^1 \text{ind}^{(a)}_B \gamma).$$

Now $-p \leq \langle \gamma, \alpha^\vee \rangle \leq -2$ implies that $0 \leq \langle \gamma, \alpha^\vee \rangle \leq p - 2$. It follows from [Jan1, II.5.3(b)] that $R^j \text{ind}^{(a)}_B \gamma \cong \text{ind}^{(a)}_B(s_\alpha \cdot \gamma)$. Finally, [Jan1, II.4.7(1)] yields

$$\text{Ext}^i_B(V(\mu), \gamma) \cong \text{Ext}^{i-1}_B(V(\mu), \text{ind}^{(a)}_B(s_\alpha \cdot \gamma)) \cong \text{Ext}^{i-1}_B(V(\mu), s_\alpha \cdot \gamma).$$

□

2.2 The G-module $L(\omega_1) \cong H^0(\omega_1)$ is multiplicity free with dimension $2n$. The weight spaces are expressed most conveniently in the form $\pm \epsilon_i$ with $i = 1, \ldots, n$.

Lemma. Let G be of type C_n, p odd, and $\lambda \in X_1(T)$ with $\langle \lambda, \alpha_i^\vee \rangle = (p - 1)/2$ then

(a) for any weight σ of $L(\omega_1)$,

$$\text{Ext}^1_B(V(\lambda - \frac{1}{2} \alpha_n), \lambda + p\sigma) \cong \begin{cases} k & \text{if } \sigma = -\epsilon_n \\ 0 & \text{else,} \end{cases}$$

(b) for $i < n$

$$\text{Ext}^2_B(V(\lambda - \frac{1}{2} \alpha_n), \lambda - p\epsilon_i) = 0.$$

Proof. (a) If $\sigma = \epsilon_1 = \omega_1$ the weight $\lambda + p\omega_1$ is dominant and the claim follows from [Jan1, II.4.13].

For $i > 1$ and $\sigma = \epsilon_i$ it follows from the fact that λ is restricted that $-p \leq \langle \lambda + p\epsilon_i, \alpha_i^\vee \rangle \leq -1$. We apply Lemma 2.1 to obtain

$$\text{Ext}^1_B(V(\lambda - \frac{1}{2} \alpha_n), \lambda + p\epsilon_i) \cong \begin{cases} 0 & \text{if } \langle \lambda, \alpha_i^\vee \rangle = p - 1 \\ \text{Hom}_B(V(\lambda - \frac{1}{2} \alpha_n), s_{\alpha_{i-1}} \cdot (\lambda + p\epsilon_i)) & \text{else.} \end{cases}$$

Now $\text{Hom}_B(V(\lambda - \frac{1}{2} \alpha_n), s_{\alpha_{i-1}} \cdot (\lambda + p\epsilon_i)) = 0$ unless

$$\lambda - \frac{1}{2} \alpha_n = s_{\alpha_{i-1}} \cdot (\lambda + p\epsilon_i) = \lambda + p\epsilon_i + (p - 1 - \langle \lambda, \alpha_{i-1}^\vee \rangle)\alpha_{i-1} \text{ and } \langle \lambda, \alpha_{i-1}^\vee \rangle \leq p - 2.$$
The later implies that
\[0 = p\epsilon_i + \frac{1}{2} \alpha_n + (p - 1 - \langle \lambda, \alpha_{i-1}^\vee \rangle)\alpha_{i-1} = (p - 1 - \langle \lambda, \alpha_{i-1}^\vee \rangle)\alpha_{i-1} + p\left(\frac{1}{2} \sum_{k=i}^{n-1} \alpha_k\right) + \frac{p + 1}{2} \alpha_n \geq \alpha_{i-1}, \]
which is absurd.

Similarly, we can argue for \(\sigma = -\epsilon_i \) that \(-p \leq \langle \lambda - p\epsilon_i, \alpha_i^\vee \rangle \leq -1 \) and
\[
\text{Ext}_B^1(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, \lambda - p\epsilon_i) \cong \begin{cases}
0 & \text{if } \langle \lambda, \alpha_i^\vee \rangle = p - 1 \\
\text{Hom}_B(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, s_{\alpha_i} \cdot (\lambda - p\epsilon_i)) & \text{else.}
\end{cases}
\]
Clearly,
\[
\text{Hom}_B(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, s_{\alpha_i} \cdot (\lambda - p\epsilon_i)) \cong \begin{cases}
k & \text{if } \lambda - \frac{1}{2} \alpha_n = s_{\alpha_i} \cdot (\lambda - p\epsilon_i) \\
0 & \text{else.}
\end{cases}
\]
The equation \(\lambda - \frac{1}{2} \alpha_n = s_{\alpha_i} \cdot (\lambda - p\epsilon_i) = \lambda - p\epsilon_i + (p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_i \) holds, if and only if
\[
p\epsilon_i - \frac{1}{2} \alpha_n = p\left(\frac{1}{2} \sum_{k=i}^{n-1} \alpha_k\right) + \frac{p - 1}{2} \alpha_n = (p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_i,
\]
which is true only in the case \(i = n \).

(b) We apply Lemma 2.1 once to obtain
\[
\text{Ext}_B^2(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, \lambda - p\epsilon_i) \cong \begin{cases}
0 & \text{if } \langle \lambda, \alpha_i^\vee \rangle = p - 1 \\
\text{Ext}_B^1(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, s_{\alpha_i} \cdot (\lambda - p\epsilon_i)) & \text{else.}
\end{cases}
\]
Now \(\langle s_{\alpha_i} \cdot (\lambda - p\epsilon_i), \alpha_j^\vee \rangle = \langle \lambda - p\epsilon_i + (p - 1 - \langle \lambda, \alpha_j^\vee \rangle)\alpha_i, \alpha_j^\vee \rangle \geq 0 \) for all \(j \neq i + 1 \), while
\[
\langle s_{\alpha_i} \cdot (\lambda - p\epsilon_i), \alpha_i^\vee \rangle = \langle \lambda - p\epsilon_i + (p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_i, \alpha_i^\vee \rangle = \langle \lambda, \alpha_i^\vee \rangle + (\lambda, \alpha_{i+1}^\vee) + 1 - p.
\]
If \(p - 1 \leq \langle \lambda, \alpha_i^\vee \rangle + (\lambda, \alpha_{i+1}^\vee) \) then \(s_{\alpha_i} \cdot (\lambda - p\epsilon_i) \) is dominant and \(\text{Ext}_B^1(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, s_{\alpha_i} \cdot (\lambda - p\epsilon_i)) \) vanishes [Jan1, II.4.13].

Otherwise \(1 - p \leq \langle s_{\alpha_i} \cdot (\lambda - p\epsilon_i), \alpha_i^\vee \rangle \leq -1 \). In this case Lemma 2.1 yields
\[
\text{Ext}_B^2(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, \lambda - p\epsilon_i) \cong \text{Hom}_B(V\langle \lambda - \frac{1}{2} \alpha_n \rangle, s_{\alpha_i + 1} s_{\alpha_i} \cdot (\lambda - p\epsilon_i)) \cong \begin{cases}
k & \text{if } \lambda - \frac{1}{2} \alpha_n = s_{\alpha_i + 1} s_{\alpha_i} \cdot (\lambda - p\epsilon_i) \\
0 & \text{else.}
\end{cases}
\]
If \(\lambda - \frac{1}{2} \alpha_n = s_{\alpha_i + 1} s_{\alpha_i} \cdot (\lambda - p\epsilon_i) \) then \(s_{\alpha_i} \cdot (\lambda - \frac{1}{2} \alpha_n) = s_{\alpha_i} \cdot (\lambda - p\epsilon_i) \). This implies that
\[
\lambda - \frac{1}{2} \alpha_n - (\langle \lambda - \frac{1}{2} \alpha_n, \alpha_{i+1}^\vee \rangle + 1)\alpha_{i+1} = \lambda - p\epsilon_i + (p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_i,
\]
which forces
\[
(p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_i + (\langle \lambda - \frac{1}{2} \alpha_n, \alpha_{i+1}^\vee \rangle + 1)\alpha_{i+1} = p\epsilon_i - \frac{1}{2} \alpha_n = p\left(\frac{1}{2} \sum_{k=i}^{n-1} \alpha_k\right) + \frac{p - 1}{2} \alpha_n.
\]
Comparing the coefficients for \(\alpha_i \) shows that this is impossible.

\[\square\]

2.3 The following Proposition is the first step in the construction of self-extensions for the finite symplectic groups.
Proposition. Let G be of type C_n, p odd, and $\lambda \in X_1(T)$ with $\langle \lambda, \alpha_n \rangle = (p-1)/2$, then
\[\text{Ext}^1_G(V(\lambda - \frac{1}{2}\alpha_n), H^0(\lambda) \otimes L(\omega_1)) \approx k. \]

Proof. The G-module $L(\omega_1)$ is multiplicity free with weight spaces $\pm \epsilon_i$, $i = 1, \ldots, n$. Let S denote the B-submodule consisting of the weight spaces $-\epsilon_1, \ldots, -\epsilon_n$, T be the B-submodule consisting of the weight spaces $-\epsilon_1, \ldots, -\epsilon_{n-1}$, and Q be the B-quotient $L(\omega_1)/S$. The weight spaces of Q are $\epsilon_1, \ldots, \epsilon_n$.

The short exact sequence $0 \rightarrow S \rightarrow L(\omega_1) \rightarrow Q \rightarrow 0$ yields the exact sequence
\[\text{Hom}_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes Q^{(1)}) \rightarrow \text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes S^{(1)}) \]
\[\rightarrow \text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes (L(\omega_1)) \rightarrow \text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes Q^{(1)}). \]

The first term in this sequence is zero because $\lambda - \frac{1}{2}\alpha_n$ is not a weight of $\lambda \otimes Q^{(1)}$. The last term vanishes by Lemma 2.2(a). Therefore
\[\text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes (L(\omega_1)) \approx \text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes S^{(1)}). \]

Next we use the short exact sequence $0 \rightarrow T \rightarrow S \rightarrow -\epsilon_n \rightarrow 0$ to obtain
\[\text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes T^{(1)}) \rightarrow \text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes S^{(1)}) \]
\[\rightarrow \text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes \epsilon_n) \rightarrow \text{Ext}^2_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes T^{(1)}) \]

Clearly the first term is zero and the last term vanishes by Lemma 2.2(b). One concludes from Lemma 2.2(a) that
\[\text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda \otimes (L(\omega_1)) \approx \text{Ext}^1_B(V(\lambda - \frac{1}{2}\alpha_n), \lambda - p\epsilon_n) \approx k. \]

\[\square \]

Corollary. Let G be of type C_n, p odd, and $\lambda \in X_1(T)$ with $\langle \lambda, \alpha_n \rangle = (p-1)/2$, then
\[\text{Ext}^1_{G_1}(V(\lambda - \frac{1}{2}\alpha_n), H^0(\lambda)) \neq 0. \]

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence
\[E_2^{ij} = \text{Ext}^i_{G/G_1}(V(\lambda - \frac{1}{2}\alpha_n), H^0(\lambda), L(\omega_1)) \Rightarrow \text{Ext}^{i+j}_{G_1}(V(\lambda - \frac{1}{2}\alpha_n), H^0(\lambda) \otimes L(\omega_1)). \]

Since $\text{Hom}_{G_1}(V(\lambda - \frac{1}{2}\alpha_n), H^0(\lambda)) = 0$, we have $E_2^{1,0} = E_2^{2,0} = 0$ and from the corresponding five-term sequence $E_2^1 \approx E_2^{0,1}$. \[\square \]

3 G_1-extensions for pairs of simple modules whose highest weights are “close”

Throughout this section G is of type C_n. We establish the existence of certain non-trivial G-extensions between simple G-modules, one with restricted highest weight and the other non-restricted. These will yield G_1-extensions for pairs of simple modules whose highest weights are “close” as well as self-extensions for the finite symplectic groups.
3.1 First needed are some vanishing results for extensions.

Lemma. Let G be of type C_n, p odd, $\mu, \gamma \in X(T)_+$ and $\lambda \in X_1(T)$ with $\langle \lambda, \alpha_n^\vee \rangle = (p-1)/2$. Moreover, assume that $\langle \lambda, \alpha_n^\vee \rangle < (p-1)/2$ for $i < n$. Then the following hold

(a) If $\mu \leq \lambda - \frac{1}{2}\alpha_n$, then $\Ext_G^1(V(\mu), H^0(\lambda) \otimes L(\omega_1)(1)) = 0$ unless $\mu = \lambda - \frac{1}{2}\alpha_n$.

(b) If $\gamma \leq \lambda$, then $\Ext_G^1(V(\gamma), H^0(\lambda - \frac{1}{2}\alpha_n) \otimes L(\omega_1)(1)) = 0$ unless $\gamma = \lambda$.

Proof. (a) Assume that $\Ext_G^1(V(\mu), H^0(\lambda) \otimes L(\omega_1)(1)) \cong \Ext_B^1(V(\mu), \lambda \otimes L(\omega_1)(1)) \neq 0$. Then there exists a weight σ of $L(\omega_1)$ such that $\Ext_B^1(V(\mu), \lambda + p\sigma) \neq 0$. It follows from [Jan1, II.4.13] that $\sigma \neq \epsilon_i$. If $\sigma = \epsilon_i$ with $i > 1$ we apply Lemma 2.1 and conclude as in the proof of Lemma 2.2 that

$$\mu = s_{\alpha_i} \cdot (\lambda + p\epsilon_i) = \lambda + p\epsilon_i + (p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_{i-1}$$

$$= \lambda - \frac{1}{2}\alpha_n + p \sum_{k=i}^{n-1} \alpha_k + \frac{p+1}{2}\alpha_n + (p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_{i-1} > \lambda - \frac{1}{2}\alpha_n.$$

This contradicts the assumption that $\mu \leq \lambda - \frac{1}{2}\alpha_n$.

If $\sigma = -\epsilon_i$, Lemma 2.1 and the argument in the proof of Lemma 2.2 show that

$$\mu = s_{\alpha_i} \cdot (\lambda - p\epsilon_i) = \lambda - p\epsilon_i + (p - 1 - \langle \lambda, \alpha_i^\vee \rangle)\alpha_i.$$

If $i < n$ the inner product with α_{i+1} yields $\langle \mu, \alpha_{i+1}^\vee \rangle = \langle \lambda, \alpha_{i+1}^\vee \rangle + \langle \lambda, \gamma^\vee \rangle - (p - 1) < 0$.

This contradicts the fact that μ is dominant.

That leaves the case $i = n$. Here one obtains $\mu = \lambda - p\epsilon_n + (p - 1 - \frac{p-1}{2})\alpha_n = \lambda - \epsilon_n = \lambda - \frac{1}{2}\alpha_n$, as claimed.

Part (b) is left to the reader. \hfill \Box

3.2 The following Proposition is believed to hold even without conditions (i) and (ii).

Proposition. Let G be of type C_n, p odd, and $\lambda \in X_1(T)$ with $\langle \lambda, \alpha_n^\vee \rangle = (p-1)/2$. Moreover, assume that

(i) $\langle \lambda, \alpha_i^\vee \rangle < (p-1)/2$ for $i < n$,

(ii) $H^0(\lambda)$ and $H^0(\lambda - \frac{1}{2}\alpha_n)$ have only p-restricted composition factors,

then $\Ext_G^1(L(\lambda - \frac{1}{2}\alpha_n), L(\lambda) \otimes L(\omega_1)(1)) \cong k$.

Proof. By Proposition 2.3 $\Ext_G^1(V(\lambda - \frac{1}{2}\alpha_n), H^0(\lambda) \otimes L(\omega_1)(1)) \cong k$. Therefore there exists a weight $\mu \leq \lambda - \frac{1}{2}\alpha_n$ such that $\Ext_G^1(L(\mu), H^0(\lambda) \otimes L(\omega_1)(1)) \neq 0$. Define the G-module S via the short exact sequence $0 \rightarrow S \rightarrow V(\mu) \rightarrow L(\mu) \rightarrow 0$ and obtain the exact sequence $\Hom(S, H^0(\lambda) \otimes L(\omega_1)(1)) \rightarrow \Ext_G^1(L(\mu), H^0(\lambda) \otimes L(\omega_1)(1)) \rightarrow \Ext_G^1(V(\mu), H^0(\lambda) \otimes L(\omega_1)(1))$. All the weights in S are less than $\lambda + p\omega_1$ and therefore

$$0 \neq \Ext_G^1(L(\mu), H^0(\lambda) \otimes L(\omega_1)(1)) \rightarrow \Ext_G^1(V(\mu), H^0(\lambda) \otimes L(\omega_1)(1)).$$

Now Lemma 3.1 forces $\mu = \lambda - \frac{1}{2}\alpha_n$ and $\Ext_G^1(L(\lambda - \frac{1}{2}\alpha_n), H^0(\lambda) \otimes L(\omega_1)(1)) \neq 0$.

From condition (ii) we conclude that there exists a p-restricted weight $\gamma \leq \lambda$ such that $\Ext_G^1(L(\lambda - \frac{1}{2}\alpha_n), L(\gamma) \otimes L(\omega_1)(1)) \neq 0$. We make use of the short exact sequence $0 \rightarrow T \rightarrow
V(\lambda - \frac{1}{2} \alpha_n) \to L(\lambda - \frac{1}{2} \alpha_n) \to 0 \text{ to obtain the exact sequence}

\text{Hom}_G(T, L(\gamma) \otimes L(\omega_1)) \to \text{Ext}_G^1(L(\lambda - \frac{1}{2} \alpha_n), L(\gamma) \otimes L(\omega_1))

\to \text{Ext}_G^1(V(\lambda - \frac{1}{2} \alpha_n), L(\gamma) \otimes L(\omega_1)).

The first term vanishes because \gamma and the composition factors of T are restricted. Therefore

\text{Ext}_G^1(L(\gamma), H^0(\lambda - \frac{1}{2} \alpha_n) \otimes L(\omega_1)) \cong \text{Ext}_G^1(V(\lambda - \frac{1}{2} \alpha_n), L(\gamma) \otimes L(\omega_1)) \neq 0.

Repeating the earlier argument yields Ext^1_G(V(\gamma), H^0(\lambda-\frac{1}{2} \alpha_n) \otimes L(\omega_1)) \neq 0. Now Lemma 3.1 forces \gamma = \lambda and the claim follows. \hfill \Box

In [BNP2, 5.3, Thm.(A)] it was shown that Ext^1_G(L(\mu), L(\lambda)) \cong Ext^1_G(L(\mu), L(\lambda)) for any pair of restricted weights \lambda and \mu that are "close" (i.e. \langle \mu - \lambda, \alpha \rangle < p/3, for any root \alpha), unless G is of type C_n and the weights are reflections of each other across the hyperplane \langle \gamma + \rho, \alpha \rangle = \frac{p}{2}. For type C_n the Corollary gives examples of such "close" pairs of simple modules where Ext^1_G and Ext^1_{G_1} differ. Notice that \lambda = \frac{p-1}{2} \omega_n satisfies conditions (i) and (ii).

Corollary. Let G be of type C_n, p odd, and \lambda \in X_1(T) with \langle \lambda, \alpha_n^\vee \rangle = (p-1)/2. Moreover, assume that

(i) \langle \lambda, \alpha_i^\vee \rangle < (p-1)/2 for i < n,
(ii) \text{H}^0(\lambda) \text{ and } \text{H}^0(\lambda - \frac{1}{2} \alpha_n) \text{ have only p-restricted composition factors},

then Ext^1_G(L(\lambda - \frac{1}{2} \alpha_n), L(\lambda)) \neq Ext^1_G(L(\lambda - \frac{1}{2} \alpha_n), L(\lambda)) = 0.

Proof. Obviously, Ext^1_G(L(\lambda - \frac{1}{2} \alpha_n), L(\lambda)) = 0. On the other hand, [And, Thm 5.2(a)] yields an isomorphism

\text{Hom}_{G/G_1}(\text{Ext}^1_{G_1}(L(\lambda - \frac{1}{2} \alpha_n), L(\lambda)), L(\omega_1)) \cong \text{Ext}^1_G(L(\lambda - \frac{1}{2} \alpha_n), L(\lambda) \otimes L(\omega_1)).

The assertion follows from the previous Proposition. \hfill \Box

It was shown in [BNP2, 5.4, Cor.(A)] that root systems other than type C_n (n \geq 1) do not admit non-trivial G-extensions between simple modules whose highest weights are inside the same alcove. Notice that for p > 2n the weights \frac{p-1}{2} \omega_n - \frac{1}{2} \alpha_n and \frac{p-1}{2} \omega_n are contained in the same alcove. Again the root systems of type C_n are exceptional for the existence of such G_1-extensions.

4 Self-extensions for Sp_{2n}(F_p)

Let G be of type C_n. By Proposition 3.2 there exist non-trivial G-extensions E,

0 \to L(\frac{p-1}{2} \omega_n) \to E \to L(\frac{p-1}{2} \omega_n - \frac{1}{2} \alpha_n) \otimes L(\omega_1) \to 0.

We will show that E contains a self-extension of L(\frac{p-1}{2} \omega_n) as a G(F_p)-submodule.

4.1 In order to describe the G(F_p)-structure of such non-trivial G-extensions, we embed them in tensor products with the Steinberg module.
Lemma. Let G be of type C_n, p odd, and $\lambda \in X_1(T)$. Assume that there exist non-trivial G-extensions

$$0 \to L(\lambda) \to E \to L(\lambda + \frac{1}{2}\alpha_n) \otimes L(\omega_1)^{(1)} \to 0,$$

then E is a G-submodule of $St \otimes L((p-1)\rho - \lambda)$.

Proof. The short exact sequence defining E yields the exact sequence

$$\Hom_G(L(\lambda + \frac{1}{2}\alpha_n) \otimes L(\omega_1)^{(1)}, St \otimes L((p-1)\rho - \lambda))$$

$$\to \Hom_G(E, St \otimes L((p-1)\rho - \lambda))$$

$$\to \Hom_G(L(\lambda), St \otimes L((p-1)\rho - \lambda))$$

$$\to \Ext^1_G(L(\lambda + \frac{1}{2}\alpha_n) \otimes L(\omega_1)^{(1)}, St \otimes L((p-1)\rho - \lambda)).$$

We will show that the first and last term in this sequence vanish. Recall that $St \otimes L(\omega_1)^{(1)}$ is a simple G-module. Comparing highest weights shows that

$$\Hom_G(L(\lambda + \frac{1}{2}\alpha_n) \otimes L(\omega_1)^{(1)}, St \otimes L((p-1)\rho - \lambda)) = 0.$$

Similar weight comparisons show that

$$\Hom_G(L(\lambda + \frac{1}{2}\alpha_n), St \otimes L((p-1)\rho - \lambda)) \cong \Hom_G(L(\lambda + \frac{1}{2}\alpha_n) \otimes L((p-1)\rho - \lambda), St)$$

$$\cong \Hom_G(L(\lambda + \frac{1}{2}\alpha_n) \otimes L((p-1)\rho - \lambda), St).$$

Clearly, $\Hom_G(L(\lambda + \frac{1}{2}\alpha_n) \otimes L((p-1)\rho - \lambda), St) = 0$, because not both the weights $(p-1)\rho - \lambda + \frac{1}{2}\alpha_n$ and λ are contained in the root lattice.

The Steinberg module is injective as a G_1-module. It follows from the five-term-exact sequence of the Lyndon-Hochschild-Serre spectral sequence and the above that

$$\Ext^1_G(L(\lambda + \frac{1}{2}\alpha_n) \otimes L(\omega_1)^{(1)}, St \otimes L((p-1)\rho - \lambda)) = 0.$$

From [Jan1, II.10.15] one obtains $\Hom_G(L(\lambda), St \otimes L((p-1)\rho - \lambda)) \cong k$. This forces $\Hom_G(E, St \otimes L((p-1)\rho - \lambda + \frac{1}{2}\alpha_n)) \cong k$. The assumption on E to be a non-trivial extension makes the homomorphism an embedding. \hfill \Box

4.2 Here we show that $L(\frac{p-1}{2}\omega_n)$ appears in the $G(\mathbb{F}_p)$-socle of $L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes L(\omega_1)$.

Lemma. Let G be of type C_n, α_n be the unique long simple root and ω_n the corresponding fundamental weight. If p odd, then $\Hom_G(L(\frac{p-1}{2}\omega_n), L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes L(\omega_1)) \cong k$.

Proof. Recall that $H^0(\omega_1) \cong L(\omega_1)$. The tensor product $H^0(\frac{p-1}{2}\omega_n) \otimes H^0(\omega_1)$ has a good filtration [Jan1, II.4.19]. Direct computation shows that the factors of the filtration are $H^0(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n)$ and $H^0(\frac{p-1}{2}\omega_n + \omega_1)$ with $\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n$ being the smaller weight. Therefore
Hom\(_G(L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n), H^0(\frac{p-1}{2}\omega_n) \otimes L(\omega_1))\)
\[= \text{Hom}_G(V(\frac{p-1}{2}\omega_n), L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes L(\omega_1)) \cong k.\]

Assume that \(\text{Hom}_G(L(\frac{p-1}{2}\omega_n), L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes L(\omega_1)) = 0.\) Then there exists a composition factor \(L(\gamma)\) of \(V(\frac{p-1}{2}\omega_n)\) whose highest weight satisfies \(\gamma \uparrow \frac{p-1}{2}\omega_n\) \([\text{Jan}1, \text{II}.6.13]\) such that \(0 \neq \text{Hom}_G(L(\gamma), L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes H^0(\omega_1)) \hookrightarrow \text{Hom}_G(L(\gamma), H^0(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes H^0(\omega_1)).\)

The tensor product \(H^0(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes H^0(\omega_1)\) has a filtration with factors \(H^0(\frac{p-1}{2}\omega_n - \alpha_n), H^0(\frac{p-1}{2}\omega_n - \alpha_{n-1} - \alpha_n), H^0(\frac{p-1}{2}\omega_n),\) and \(H^0(\frac{p-1}{2}\omega_n + \alpha_1 + \ldots + \alpha_{n-1}).\) This forces \(\gamma = \frac{p-1}{2}\omega_n - \alpha_n\) or \(\gamma = \frac{p-1}{2}\omega_n - \alpha_{n-1} - \alpha_n.\) We will proceed to show that neither weight is strongly linked to \(\frac{p-1}{2}\omega_n.\)

The only weights that lie between \(\frac{p-1}{2}\omega_n - \alpha_n\) and \(\frac{p-1}{2}\omega_n\) are \(\frac{p-1}{2}\omega_n - \alpha_{n-1} = \omega \cdot \frac{p-1}{2}\omega_n\) and \(\frac{p-1}{2}\omega_n - \alpha_n.\) By \([\text{Jan}1, \text{II}.6.4(1)]\) it is sufficient to show that \(\frac{p-1}{2}\omega_n - \alpha_n\) and \(\frac{p-1}{2}\omega_n - \alpha_{n-1} - \alpha_n\) are not reflections of \(\frac{p-1}{2}\omega_n\) and that \(\frac{p-1}{2}\omega_n - \alpha_{n-1} - \alpha_n\) is not a reflection of \(\frac{p-1}{2}\omega_n - \alpha_{n-1}.\) Set \(\alpha\) equal to \(\alpha_n\) or \(\alpha_n + \alpha_{n-1}\) and assume that there is a root \(\beta\) and an integer \(m\) with \(s_{\beta, mp} \cdot \frac{p-1}{2}\omega_n = \frac{p-1}{2}\omega_n - ((\frac{p-1}{2}\omega_n + \rho, \beta') - mp)\beta = \frac{p-1}{2}\omega_n - \alpha.\) This forces \(\beta = \alpha\) and \(\frac{p-1}{2} + 1 = (\frac{p-1}{2}, \omega_n + \rho, \alpha') = mp + 1.\) Similarly, one obtains from \(s_{\beta, mp} \cdot \frac{p-1}{2}\omega_n - \alpha_{n-1} = \frac{p-1}{2}\omega_n - \alpha_{n-1} + \alpha_n\) that \(\beta = \alpha\) and \(\frac{p+1}{2} + 1 = (\frac{p-1}{2}\omega_n - \alpha_{n-1} + \rho, \alpha') = mp + 1.\) Either case leads via \(p \pm 1 = 2mp\) to a contradiction.

\[\square\]

4.3 Self-extensions for odd primes

Proposition. Let \(\alpha_n\) denote the unique long simple root in the root system of a symplectic algebraic group \(Sp_2n(k)\) and \(\omega_n\) the corresponding fundamental weight. If \(p\) is odd then

(i) \(\text{Ext}^1_{Sp_2n}(\mathbb{F}_p)(L(\frac{p-1}{2}\omega_n), L(\frac{p-1}{2}\omega_n)) \neq 0\) and

(ii) \(\text{Ext}^1_{Sp_2n}(\mathbb{F}_p)(L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n), L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n)) \neq 0.\)

Proof. (i) The weight \(\frac{p-1}{2}\omega_n\) satisfies the conditions of Proposition 3.2 because \((\frac{p-1}{2}\omega_n, \alpha_0') = p - 1.\) Therefore

\[k \cong \text{Ext}^1_G(L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n), L(\frac{p-1}{2}\omega_n) \otimes L(\omega_1)) \cong \text{Ext}^1_G(L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes L(\omega_1)(1), L(\frac{p-1}{2}\omega_n))\]

and there exists a non-trivial \(G\)-extensions

\[0 \to L(\frac{p-1}{2}\omega_n) \to E \to L(\frac{p-1}{2}\omega_n - \frac{1}{2}\alpha_n) \otimes L(\omega_1)(1) \to 0.\]

(4.3.1)

The \(G\)-module \(L(\frac{p-1}{2}\omega_n) \otimes L(\omega_1)(1)\) is isomorphic to \(L(\frac{p-1}{2}\omega_n) \otimes L(\omega_1)\) as a \(G(\mathbb{F}_p)\)-module. From the exact sequence (4.3.1) we obtain the following exact sequence of \(G(\mathbb{F}_p)\)-modules

\[0 \to \text{Hom}_G(\mathbb{F}_p)(L(\frac{p-1}{2}\omega_n), L(\frac{p-1}{2}\omega_n)) \to \text{Hom}_G(\mathbb{F}_p)(L(\frac{p-1}{2}\omega_n), E)\]
Notice that the module \(L^{(p-1)/2} \omega_n \) is simple as a \(G(F_p) \)-module and that the \(G \) and \(G(F_p) \)-socle of \(L^{(p-1)/2} \omega_n \circledast L(\omega_1) \) coincide. We apply Lemma 4.2 to the above sequence to obtain the exact sequence

\[
0 \rightarrow k \rightarrow \text{Hom}_{G(F_p)}(L^{(p-1)/2} \omega_n, E) \rightarrow k \rightarrow \text{Ext}_{G(F_p)}^1(L^{(p-1)/2} \omega_n, L^{(p-1)/2} \omega_n).
\]

It is therefore sufficient for our claim to show that \(\text{Hom}_{G(F_p)}(L^{(p-1)/2} \omega_n, E) \cong k \). We will show that \(L^{(p-1)/2} \omega_n \) appears only once in the \(G(F_p) \)-socle of \(E \). It follows from Lemma 4.1 that the \(G(F_p) \)-socle of \(E \) is contained in the \(G(F_p) \)-socle of the \(G \)-module \(St \circledast L((p-1)\rho - \frac{p-1}{2} \omega_n) \). Our claim follows from [Jan2, Satz 1.5] and comparison of highest weights via

\[
\dim \text{Hom}_{G(F_p)}(L^{(p-1)/2} \omega_n, St \circledast L((p-1)\rho - \frac{p-1}{2} \omega_n))
= [L^{(p-1)/2} \omega_n] \circledast L((p-1)\rho - \frac{p-1}{2} \omega_n) : St|_{G(F_p)}
= \sum_{\nu \in \chi(T)_+} [L^{(p-1)/2} \omega_n] \circledast L((p-1)\rho - \frac{p-1}{2} \omega_n) \circledast L(\nu) : St \circledast L(\nu)^{(1)}|_G
= [L^{(p-1)/2} \omega_n] \circledast L((p-1)\rho - \frac{p-1}{2} \omega_n) : St|_G = 1.
\]

The proof of (ii) is left to the reader. \(\square \)

These self-extensions have also been discovered by Tiep and Zalesskiı (see [TZ, 3.18]). Their method of proof is quite different. They show that the existence of self-extensions is a necessary condition for certain irreducible \(p \)-modular representations to have a lift to characteristic zero. A result due to Zalesskiı and Suprunenko [ZS] says that \(L^{(p-1)/2} \omega_n - \frac{1}{2} \alpha_n \) and \(L^{(p-1)/2} \omega_n \) are reduction modulo \(p \) of irreducible complex Weil representations for \(Sp_{2n}(F_p) \). Our methods have the advantage that they produce more families of self-extensions, at least for large primes.

4.4 More examples of self-extensions for large primes

Let \(G \) be of type \(C_n, p > 2n \), and \(\lambda \in X_1(T) \) with \(\langle \lambda, \alpha^\vee_i \rangle = (p-1)/2 \). Moreover, assume that \(\lambda \) is a \(p \)-regular weight. It follows from the translation principle [Jan1, II.7] that the module \(L(\lambda) \circledast L(\omega_1) \) is semi-simple both as a \(G \)-modules as well as a \(G(F_p) \)-modules (see [Hum2, p. 350]). A straightforward calculation shows that the weight \(\lambda - \epsilon_n = \lambda - \frac{1}{2} \alpha_n \) is also \(p \)-regular and contained in the same alcove. Hence \(\text{Hom}(L(\lambda - \frac{1}{2} \alpha_n), L(\lambda) \circledast L(\omega_1)) \cong k \). Using the same arguments as in the proof of Proposition 1.1 one obtains:

Proposition. Let \(G \) be of type \(C_n, p > 2n \), and \(\lambda \in X_1(T) \) with \(\langle \lambda, \alpha^\vee_n \rangle = (p-1)/2 \). Moreover, assume that

(i) \(\langle \lambda, \alpha^\vee_i \rangle < (p-1)/2 \) for \(i < n \),

(ii) \(H^0(\lambda) \) has only \(p \)-restricted composition factors,
then $\text{Ext}^1_{G(F_p)}(L(\lambda), L(\lambda))$ and $\text{Ext}^1_{G(F_p)}(L(\lambda - \frac{1}{2}\alpha_n), L(\lambda - \frac{1}{2}\alpha_n))$ do not vanish.

Similarly, it follows from the translation principle that any p-regular weight λ with $\langle \lambda, \alpha_n^\vee \rangle = (p - 1)/2$ that shares an alcove with $\frac{p-1}{2}\omega_n$ satisfies $\text{Ext}^1_{G_1}(L(\lambda - \frac{1}{2}\alpha_n)), L(\lambda) \otimes L(\omega_1)^{(1)} \cong k$. We can argue as above and conclude that $\text{Ext}^1_{G(F_p)}(L(\lambda), L(\lambda))$ and $\text{Ext}^1_{G(F_p)}(L(\lambda - \frac{1}{2}\alpha_n), L(\lambda - \frac{1}{2}\alpha_n))$ do not vanish in these cases.

References

