I. The Endocrine System
• A. Hormones and Other Signaling Molecules

• 1. _______________ are hormones and secretions that can bind to target cells and elicit in them a response.

• 2. There are _______ main types of signaling molecules

• _______________ are secreted from endocrine sources and some neurons, and are then transported by the blood to remote targets.

• _______________ are secreted from neurons and act on immediately adjacent target cells for a short time.

• _______________ are secreted from cells of many different tissues; they act locally and are swiftly degraded

• _______________, which are secreted by exocrine glands, have targets outside the body; they integrate social activities between animals.

II. Signaling Mechanisms
• A. The Nature of Hormonal Actions

• 1. The sources of _________________ may be collectively called the _________________, which shows intimate connections with the nervous system.

• 2. Different _________________ different cellular response mechanisms.

• 3. Not all cells have _______________ for all hormones; the cells that respond are selected by the means of the type of receptor they possess.
B. Characteristics of Steroid Hormones

1. ________________, assembled from ____________, cross membranes readily.

2. Steroids ________________ or ____________ protein synthesis by switching certain genes on or off.

 They bind to ________________ in the nucleus, and then activate transcription.

III. The Hypothalamus and Pituitary Gland

A. The ________________ and ________________ work jointly as the neural-endocrine control center.

1. The ________________ is a portion of the brain the monitors internal conditions and emotional states.

2. The ________________ is a pea-sized gland connected to the hypothalamus by a stalk.

The ________________ of the pituitary consists of nervous tissue and releases two neurohormones made in the hypothalamus.
• The ___________________________ consists of glandular tissue and secretes six hormones and controls the release of others.

• B. Posterior Lobe Secretions

• 1. The ________________________ of neuron cell bodies in the hypothalamus ________________ into the posterior lobe of the pituitary.

• 2. Two hormones are released into the capillary bed.

• a. ______________________________ acts on the walls of kidney tubules to control the body’s water and solute levels.

• b. ______________________________ triggers uterine muscle contractions to expel the fetus and acts on mammary glands to release milk.

Figure 36.5a
Page 633
Figure 36.5b
Page 633

• C. Anterior Lobe Secretions

• 1. The anterior lobe releases six hormones that stimulate (“tropic”) other endocrine glands:

• __________________________ stimulates the adrenal cortex

• __________________________ stimulates the thyroid gland

• __________________________ stimulates egg formation in females and sperm formation in males

• __________________________ also acts on the ovary to release the egg and on the testes to release the sperm.
• _______________ acts on the mammary glands to sustain milk production.

• _______________, or _______________, acts on body cells in general to promote growth.

• 2. The _______________ produces releasing and inhibiting hormones that target the anterior pituitary.

IV. Abnormal Pituitary Outputs

• A. The body does not produce ______________ quantities of each hormone.

• B. But experience has shown that ______________, no matter how tiny, are critical to normal body functioning.

• 1. In childhood, too little ______________ can cause pituitary dwarfism, while too much causes gigantism.

• 2. ______________ of ______________ in adulthood causes thickening of skin and bones called ______________.

V. Feedback Control of Hormonal Secretions

• A. A shift in the amount of hormone in the blood causes a feedback mechanism to operate.

• 1. With ______________, an increase or decrease in the concentration of a hormone triggers events that inhibit further secretion.

• 2. With ______________, an increase in the concentration of hormone triggers events that stimulate further secretion.
• B. Negative Feedback from the Adrenal Cortex

 • 1. One ________________ is located on top of each kidney.

 • 2. Among the secretions of the outer portion are the ________________ such as ________________, which control blood glucose levels.

 ________________ secretions is an example of a negative feedback loop.

 When blood levels of glucose ________________ (as in hypoglycemia), the hypothalamus releases CRH -> anterior pituitary -> ACTH -> adrenal cortex -> cortisol, this prevents muscle cells from withdrawing glucose from the blood.

 When the body is ________________, as in painful injury, the nervous system provides an override mechanism in which the levels of cortisol remain high to promote healing.

Figure 36.8
Page 636

C. Local Feedback in the Adrenal Medulla

 • 1. The inner medulla portion secretes ________________ and norepinephrine under direction from sympathetic nerves from the hypothalamus.

 • 2. Its secretions mobilize the body during times of excitement or stress (“fight-or flight”) response.
D. Cases of Skewed Feedback from the Thyroid

- 1. The human ________________ lies at the base of the neck in front of the trachea.

- 2. Its hormones, ________________ and triiodothyronine, influence metabolic rates, growth, and development.

 a. These two hormones ________________ critical amounts of iodine.

 b. If the blood levels of iodine are ________________, the pituitary responds with too much TSH causing the thyroid gland to enlarge abnormally in what we call a goiter.

V. Direct Responses to Chemical Changes

A. Secretions from Pancreatic Islets

- 1. The ________________ is dual function gland; its exocrine function is to secrete digestive enzymes.

- 2. Certain cells within the pancreas have an endocrine function:

 a. ________________ cells secrete glucagon, which causes glycogen stored in the liver to be converted to glucose, raising its levels in the blood.

 b. ________________ cells secret insulin, which stimulates the uptake of glucose by liver, muscle, and adipose to reduce glucose levels in the blood, especially after a meal.
• c. ____________ cells secrete somatostatin, which can inhibit the secretion of glucagon and insulin.

Figure 36.12
Page 639

• 3. ________________ is a disease resulting from imbalances of insulin: its effects include weight loss, water-solute problems, ketone production, and possible death.

 • a. In ________________, insulin is no longer produced because the beta cells have been destroyed by an autoimmune response; treatment is by insulin injection.

 • b. In ________________, the insulin levels are near normal but the target cells cannot respond to the hormone; controlling diet is an effective treatment.