Topics in Parasitology BLY 533 - 2007
Vertebrate Immune System

V. Vertebrate Immune System
A. Non-specific defenses against pathogens
1. Skin - physical barrier
 a. Tough armor protein KERATIN
 b. Surface fluids (sweat, tears, saliva)
 (1) Contain bacteria killing enzymes, LYSOZYMES
 (2) Wash away bacteria
 c. Symbiotic bacteria prevent fungi & bacteria from growing
 (showers) (antibiotic problem)
 d. Body cavities
 (1) Mucus traps bacteria
 (2) Enzymes & acid in stomach kill bacteria
2. If pathogens evade the blocks to entry
 a. Cells - LEUKOCYTES = WBCs such as PHAGOCYTES
 (1) Ingest bacteria
 (2) Dead remains form PUS
 (3) Attack ALL foreign invaders, not specific
 b. Chemicals
 (1) HISTAMINE
 (a) Dilates arterioles inducing inflammation
 (b) Increase blood flow
 (2) KININS
 (a) Attract WBCs
 (b) Stimulate pain neurons inducing care of wound
 (3) COMPLEMENT
 (a) Group of plasma proteins
 (b) Bind to bacteria coat
 i) Phagocytes recognize complement
 ii) Forms pores in coat causing them to swell & burst
 (4) INTERFERON
 (a) Stimulates cell resistance to viruses
 (b) Blocks synthesis of viral coat
B. Specific Defenses against pathogens or Responses of Immune System
1. HUMORAL [= fluid] IMMUNE RESPONSE
 a. Proteins in blood & lymph
 b. Attack bacteria & viruses inside body, but outside cells
 c. ANTIBODY proteins (= IMMUNOGLOBINS)
 (1) Proteins that bind to specific molecules (ANTIGENS or IMMUNOGENS) on foreign cells
 (2) "Y" shaped
(a) Amino acid composition of stalk is constant among antibodies
(b) Composition of arms varies
 i) Millions of variations
 ii) Arms bind to antigens at the ANTIGENIC DETERMINANT
d. Fundamental concept
 (1) Vertebrates born with genes that code for millions of antibodies; most never used
 (2) Immune system does NOT detect foreign substance and then build a specific protein that will bind to it
2. CELLULAR IMMUNE RESPONSE
 a. Cells do the attacking
 b. Fight:
 (1) Viruses
 (2) Fungi
 (3) Animal parasites

C. Immunoglobins: Agents of the humoral response
 1. Killing mechanisms
 a. Multiple binding sites
 (1) Function like glue to link invading cells
 (2) Mass of foreign material easier to destroy
 b. OPSONIZATION
 (1) Coat foreign cells
 (2) Antibody stalks (protruding outward) recognized
 (3) Some lymphocytes only engulf antibody-labeled cells
 c. Activate complement

2. Types of antibodies
 a. IgM
 (1) 1st secreted by plasma cells
 (2) Bind invader into clumps (easier for phagocytes to engulf)
 b. IgG
 (1) About 85% of antibodies in blood
 (2) Activate complement
 (3) Neutralize toxins
 (4) Bind to antigens making them easier to be ingested by macrophages
 c. IgE
 (1) Trigger inflammation
 (2) Allergic reactions
 (3) Active in schistosome worm infections
 d. IgA
 (1) Secreted across epithelial membranes
(2) In tears, saliva, gastric juices
(3) In mother's milk giving some immunity to nursing infant
e. IgD serve as membrane receptors on B-cells

D. T-Cells: Agents of both responses
1. Originate in red marrow
2. Mature in thymus gland
3. Participate in both cellular & humoral immune responses
 a. Cytotoxic T-cells = TC-cells kill virus infected cells
 b. Helper T-cells = TH-cells
 (1) Activate B-cells
 (a) Originate in red marrow & liver of fetus
 (b) Make antibodies
 (2) Become Suppressor cells TS-cells

4. MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) proteins
 a. Class II MHC - Humoral Immune Response
 (1) Primary Response
 (a) Antigen-presenting cells
 i) Macrophage engulfs foreign material
 ii) Foreign antigen is placed on its own surface
 next to Class II MHC
 (b) Activation Phase
 i) TH -cell with matching receptor binds to
 macrophage with invader antigen
 next to Class II MHC (DUAL SITE
 RECOGNITION)
 ii) Bound macrophage secretes
 INTERLEUKIN I
 iii) Stimulates TH -cell to divide producing
 clone of TH -cells of that variety
 (c) Effector Phase
 i) If an antigen binds to its receptors, a B-cell
 will display it next to Class II
 MHC,
 ii) This B-cell can produce antibodies to that
 antigen
 iii) TH -cell (activated above) binds to B-cells
 with matching antigen next to
 MHC II
 iv) TH -cell releases chemicals that cause
 B-cells to produce clones
 v) 2 types of B-cells activated
 a) PLASMA B-CELLS: Live few
 days &
produce antibodies to invader
b) MEMORY B-CELLS: Live years &
impt. in secondary response
(d) Suppression phase
i) SUPPRESSOR T-CELLS = TS-cells
activated
as infection subsides
ii) Stop proliferation of lymphocytes
(2) Secondary response
(a) Re-invasion of foreign cells
(b) Memory B-cells activated quickly to produce
antibodies to invader
(c) Invader attacked before infection reaches high
levels
(d) Vaccinations
i) "Weakened" antigens injected
ii) Population of memory cells produced for
that
disease

b. Class I MHC - Cellular Immune Response
(1) Present on surface of every cell in host
(2) Involved in anti-viral activity
(a) Body cells infected w/ viruses (or cancerous)
display
viral proteins (antigens) next to Class I MHC
(b) TC-cell w/ matching receptor is activated when it
binds to viral antigen & MHC Type I complex
(DUAL SITE RECOGNITION)
(c) Activated TC-cell lyses infected cell

E. Disorders of the Immune System
1. Transplant rejection
 a. MHC on new organ acts as antigen
 b. Recipients immune system will attack it.
 c. Circumvention
 (1) Match up MHC
 (2) Suppress immune system (recipient susceptible to
disease)

2. Allergies
 a. Immune system over-responds to an antigen
 b. Dilation & constriction of vessels (such as bee sting) can cause
death

3. Autoimmune diseases
 a. T- & B-cells recognize antigens on body cells as "foreign"
 b. Immune cells attack cells of own body
 c. Examples
(1) Rheumatoid arthritis
(2) Myasthenia gravis

4. Acquired Immune Deficiency Syndrome (AIDS)
 a. Believed to be caused by HIV virus
 (1) Virus attacks T_H-cells
 (2) HIV DNA remains dormant inside cell for years
 (3) Antibody tests reveal that HIV has entered body and a person called "HIV positive"
 b. AIDS
 (1) After incubation period, HIV DNA is activated & infected cells produce more HIV viral particles
 (2) Patient has AIDS
 (a) More T_H-cells infected
 (b) Infected cells die
 (c) AIDS patient loses ability to fight diseases