Rotation of a data vector about an axis to a new attitude

Given the attitude of a rotational axis and the amount and sense of rotation, generate general equations
that calculate the new attitude of a data vector from its original attitude. All attitudes (orientations) are
specified as azimuth and plunge, but are converted to directional components in the orthogonal coordinate system of;

positive X = due east, horizontal
positive Y = due north, horizontal
positive Z = vertical toward center of the earth

The magnitudes of any of the given vectors is of no consequence, only the attitude of the rotated vector
is required. Input data has a blue background, answers have a light red background.

(atan(1.0)-4.0)

Deg2Rad := 180.0 Deg2Rad = 0.017 Deg2Rad is simply the conversion factor for degrees to radians.

AXisAz := 247 AxisP| := 8

a := sin(AxisAz-Deg2Rad)-sin[Deg2Rad- (90 — AxisPI)] a=-0.912 a, b, and c are the directional components of the rotation axis
))) calculated from the given azimuth and plunge.
b := cos(AxisAz-Deg2Rad)-sin[Deg2Rad- (90 — AxisPI)] b = -0.387
¢ := cos[Deg2Rad- (90 — AxisPI)] ¢ =0.139
DataAz := 110 DataP| := 45
x := sin(DataAz-Deg2Rad)-sin[Deg2Rad- (90 — DataPl)] x = 0.664 X, y and z are the directional components of the data vector calculated
. from the given azimuth and plunge.
y := cos(DataAz-Deg2Rad)-sin[Deg2Rad- (90 — DataPl)] y = -0.242
z := cos[Deg2Rad- (90 — DataPI)] z = 0.707

Rotation := 330
r := Rotation-Deg2Rad r=>576

r is the rotation amount and sense, in radians. Positive rotation is

Validity check: anticlockwise as viewed down the plunge of the rotation axis.

2 2 2
a X b +c =1 Vector OA is the rotation axis, OS is the pre-rotation attitude of the data
X2+ y2 +722 =1 vector.
OA:=|b 0S:=|y

C z

Geometry of the Rotation of a Data Vector by Vector Addition

hemisphere ———3\ ¢ (xy.2) rotation +S(X,Y,2)
surface Yy
. V
> !\ J y A= ------
& X A ;
D> 1
°S
S :
1
(> :
. 1
0 Rotational [| A@bc) +Q P > Q
axis P \’/
r Y
Circle of 3
rotation
-S -S
= ((— >
OP = OA-((OA-OS)) OP is the rotational axis multiplied by the dot product of the rotation axis and data vector. This yields the vector with
head at the center of the circle of rotation (OP).
- >
PQ := OAx 0OS . - . .
PQ is the vector perpindicular to the cross product of OA and OS. The magnitude of the cross productis equal to
NN (OA)(OS)(sin t) where tis the angle between OA and OS. Since OA and OS are unity, PQ is exactly the magnitude to
PS := PQ x OA "touch" the circle of rotation. PS is then calculated by taking the cross product of PQ and OA, yielding a vector as
depicted above.
_)
PX := cos(r)-PS PX is the projection of the rotated data vector (PV) upon the PS vector.
_)

PY := sin(r)-PQ PY is the projection of the rotated data vector (PV) upon the PQ vector.

- > -

OV := OP + PX + PY By adding OP, PX, and PY "head-to-tail", the rotated data vector is calculated in terms of the orthogonal coordinate
system defined above.

0.746

Validity check:
OV =| -0.557 OV := |OV if OV,> 0.0 5 5 5
OVg)™ +(0Vy)" +(0OV5)" =1
0.366 —OV otherwise (0Vo)” + (V)" + oV,
acos(OVO)
o= ——= o = 41.76 atan2(OVp, 0V,
Deg2Rad azimuth == [450 an2(OVo, V1) it (OVg < 0)(OV;20) azimuth = 126.725
Deg2Rad
acos(OV
- (ovi) B = 123,815 0 atan2(OVy,0V) I
Deg2Rad Deg2Rad
acos(OVz)
y=— y = 68.538
Deg2Rad
plunge := (90 —v) plunge = 21.462
Graph ical Plot The "tmax" varible controls the number of steps used to draw the rotation path.
tmax := 360
2 0.1 tmax x_cent:=0.0 vy cent:=0.0 radius_size := 3.75
t
rot(t) := r~t— EqualArea := 0 EqualAngle := 1
max

Set the variable "projection_flag" equal to "EqualArea" or "EqualAngle" to
N N N control the type of projection for the graphical plot.

pl_OV(t) := OP + cos(rot(t))-PS + sin(rot(t))-PQ
projection_flag := EqualAngle

The functions rx(), ry(), and rz() return the directional components of a rotated vector as a function of the rotation stepping variable "t". The result of
each function is multiplied by the sign of the z component to reflect the result to the lower hemisphere projection.

(1) = pl_OV (t)-sign(pl_OV (t),)
ry(t) == pl_OV/(t)-sign(pl_OV (t),)

rz(t) .= pI_OV(t)2~sign(pI_OV(t)Z) Tthe functiorr:_s cx(t_) art1_d cy(t) trace the outline (primitive) of the
stereographic projection.

~ atan2(rx(t) ,ry(t))

rotaz(t) := |450
Deg2Rad

if (rx(t) < 0) A (ry(t) = 0)

%0 atan2(rx(t) ,ry(t))
Deg2Rad

otherwise

rotmag(t) :=

t
\/_Z{Sin(wj}radius_size if projection_flag = 0

acos(|rz(®)) = |
an — -radius_size otherwise

t
ex(t) = (x_cent + C0S (360-— DegZRad}radius_sizej
tmax

t
cy(t) :=|y_cent+ sin(360—-DegZRad}radius_sizej
tmax

The functions rotaz() and rotmag() return the azimuth of the rotated
vector and the magnitude of the vector as a function of the rotation
angle stepping variable "t".

The functions pl_x(t) and pl_y(t) return the x,y coordinates of the rotation path on the graphical

diagram as a function of the "t" stepping variable.
pl_x(t) := x_cent + sin(rotaz(t)-Deg2Rad)-rotmag (t)
pLy(t) := y_cent + cos(rotaz(t)-Deg2Rad)-rotmag(t)

The data_mag, axis_mag, and rot_mag results contain the magnitude of the original, rotation axis, and roated vector as plotted on the stereographic
projection. Likewise (data_x,data_y), (axis_x,axis_y), and (rotated_x,rotated_y) are the (x,y) coordinates of the respective vectors on the projection

diagram.
(acos(lz))))y
data_mag := \/_2 sin — -radius_size if projection_flag = EqualArea

acos(z) o .
tan 2 -radius_size otherwise

data_x := x_cent + sin(DataAz-Deg2Rad)-data_mag

data x = 1.46

data_y := y_cent + cos(DataAz-Deg2Rad)-data_mag data_y = —0.531

acos| |c
axis_mag := ﬁ{sin(#j}radius_size if projection_flag = EqualArea

acos(c)) . .
tan 2 -radius_size otherwise

acos| |0V,
rot_mag := ﬁ{sin[#j}radius_size if projection_flag = EqualArea

acos(OVz)
tan — -radius_size otherwise

rotated_x := x_cent + sin(azimuth-Deg2Rad)-rot_mag rotated_x = 2.048

rotated_y := y_cent + cos(azimuth-Deg2Rad)-rot_mag rotated_y = —1.528

axis_x := x_cent + sin(AxisAz: Deg2Rad)- axis_mag axis_x = —3.001

axis_y := y_cent + cos (AxisAz-Deg2Rad)-axis_mag axis_y = —-1.274

cy()

data_y
+++
axis_y

Original data: blue cross
AXxis: green cross
Rotated: magenta cross

pLY(D)

rotated_y
++ +

cX(t),data_x, axis_x, pl_x(t) , rotated_x

