GY 302: Crystallography & Mineralogy

Lecture 26: Class VIII-Silicates
Tektosilicates part 2: Feldspars

Instructor: Dr. Douglas Haywick
Last Time

Class VIII Minerals (Tektosilicates)

1. Quartz Group
Tektosilicate Minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Formula</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO₂ (multiple varieties)</td>
<td>Trigonal</td>
</tr>
<tr>
<td>*Cristobalite</td>
<td>SiO₂</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>Coesite</td>
<td>SiO₂</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Chalcedony</td>
<td>SiO₂</td>
<td>“non crystalline”</td>
</tr>
<tr>
<td>Opal</td>
<td>SiO₂·nH₂O</td>
<td>“non crystalline”</td>
</tr>
<tr>
<td>crystalline”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*”Chert”</td>
<td>SiO₂ (multiple varieties)</td>
<td>“non crystalline”</td>
</tr>
</tbody>
</table>

Basic chemical composition: \(\text{SiO}_2 \)
Tektosilicate Minerals (Quartz Group)

Quartz
[SiO₂]

Crystal: Hexagonal (Trigonal)
Pt. Group: 32
Habit: bipyramidal, massive, drusy etc.
SG: 2.65; H: 7
L: vitreous; Str: colourless
Col: colourless (varied)
Clev: poor [0110]
Optics: Uniaxial (-); bir=0.009
 n_w=1.544; n_e=1.553
Occurrence: widespread

Name Derivation: From the German “quarz” of uncertain origin
Quartz Varieties $[\text{SiO}_2]$

Agate - banded variety of chaledony
Amethyst - purple
Avanturine - translucent chalcedony
Carnelian - flesh red chalcedony
Cat's Eye - chatoyant
Chalcedony - microcrystalline quartz
Chert - cryptocrystalline quartz
Chrysoprase - apple green chalcedony
Citrine - yellow
Flint - microcrystalline quartz
Hornstone - flint
Jasper - red or brown chalcedony
Moss Agate - variety of chaledony
Plasma - green chalcedony
Prase - leek green chalcedony
Rock Crystal
Rose Quartz - rose colored
Sapphire Quartz - blue colored
Smoky Quartz - brown to black
Tiger Eye - entombed asbestos
“Chert”
[SiO$_2$]

Crystal: N/A
Pt. Group: N/A
Habit: microcrystalline
SG: 2.09-2.65; H: 5.5 to 7
L: dull, waxy; Str: white
Col: varied
Clev: none
Optics: N/A
Occurrence: sedimentary

Chert is a rock name. Numerous varieties of chert have been identified.
Tektosilicate Minerals (Quartz Group)

Lechatlerite (‘‘Fulgurite) [SiO₂+ contaminants]

Crystal: N/A
Pt. Group: N/A
Habit: Amorphous?
SG: 2.20; H: 7.0?
L: dull; Str: white
Optics: N/A
Col: white
Clev: none
Occurrence: lightning strikes

Lightning strikes may pass 1,000,000 volts of electricity into the ground fusing quartz sand into “glass”.

http://www.mindat.org/gphotos/0707699001129998806.jpg
Six Quartz Polymorphs

Displaceive polymorphic transformations require relatively minor changes in the crystal lattice (e.g., modification of α, β or γ crystallographic angles). There is generally no change in energy at the transformation threshold so polymorphic transformations are instantaneous and reversible.

If you heat “quartz” above 600 °C it transforms to the α-polymorph (also known as high quartz). When the temperature falls below 600°C it transforms back to the β-polymorph (also known as low quartz).
Quartz Phase Diagrams

Olivine-Enstatite-Quartz System
Quartz: Last Words

Except for 2 situations:

1) Nephaline*-bearing rocks

\[\text{NaAlSiO}_4 + 2\text{SiO}_2 \rightarrow \text{NaAlSi}_3\text{O}_8 \text{ (albite)} \]

2) Corundum-bearing rocks

\[\text{Al}_2\text{O}_3 + \text{SiO}_2 \rightarrow \text{Al}_2\text{SiO}_5 \text{ (Sil/And/Ky)} \]

* A feldspathoid; you’ll hear about these next time
Today’s Agenda

Class VIII Minerals (Tektosilicates)

1. Feldspar Group
Tektosilicate Minerals (Feldspars)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Formula</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Feldspar Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanidine</td>
<td>KAlSi$_3$O$_8$</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>KAlSi$_3$O$_8$</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Anorthoclase</td>
<td>(Na, K)AlSi$_3$O$_8$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Microcline</td>
<td>KAlSi$_3$O$_8$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>v. Amazonite</td>
<td>KAlSi$_3$O$_8$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Plagioclase Feldspars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albite (Ab)</td>
<td>NaAlSi$_3$O$_8$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Oligoclase</td>
<td>An$_{10-30}$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Andesine</td>
<td>An$_{30-50}$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Labradorite</td>
<td>An$_{50-70}$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Bytownite</td>
<td>An$_{70-90}$</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Anorthite (An)</td>
<td>CaAl$_2$Si$_2$O$_8$</td>
<td>Triclinic</td>
</tr>
</tbody>
</table>
The Feldspars

General Formula:

\[\text{XAlSi}_3\text{O}_8 \text{ or } \text{XAl}_2\text{Si}_2\text{O}_8 \]

\(\text{X}= \text{Ca}^{2+}, \text{Na}^+, \text{K}^+ \)

Two Varieties:
1) Alkali Feldspars
 (incl Orthoclase Group)
2) Plagioclase Feldspars
Tektosilicate Minerals (Feldspars)

Feldspars are common igneous minerals.

http://depthome.brooklyn.cuny.edu/geology/core332/geofield.htm
Tektosilicate Minerals (Feldspars)

Feldspars are also common metamorphic minerals

http://depthome.brooklyn.cuny.edu/geology/core332/geofield.htm
The Feldspars

Alkali Feldspars

1) Orthoclase (incl. Adularia/Moonstone)
2) Microcline (incl. Amazonite)
3) Sanadine
4) Anorthoclase
5) Albite

We will group Albite in with the plagioclases
The Feldspars

Plagioclase Feldspars \((\text{NaAlSi}_3\text{O}_8-\text{CaAl}_2\text{Si}_2\text{O}_8)\)

1) Albite (Ab) = \(\text{NaAlSi}_3\text{O}_8\) \(\Rightarrow\) Na-plagioclase (from GY 111)
2)
3)
4)
5)
6) Anorthite (An) = \(\text{CaAl}_2\text{Si}_2\text{O}_8\) \(\Rightarrow\) Ca-plagioclase
The Feldspars

Plagioclase Feldspars \((\text{NaAlSi}_3\text{O}_8-\text{CaAl}_2\text{Si}_2\text{O}_8)\)

1) **Albite** (Ab) = \(\text{NaAlSi}_3\text{O}_8\)
2) **Oligoclase** \(\text{Na}_{0.9-0.7}\text{Ca}_{0.1-0.3}\text{AlSi}_3\text{O}_8\)
3)
4)
5)
6) **Anorthite** (An) = \(\text{CaAl}_2\text{Si}_2\text{O}_8\)
The Feldspars

Plagioclase Feldspars \((\text{NaAlSi}_3\text{O}_8-\text{CaAl}_2\text{Si}_2\text{O}_8)\)

1) Albite (Ab) = \(\text{NaAlSi}_3\text{O}_8\)
2) Oligoclase \(\text{Na}_{0.9-0.7}\text{Ca}_{0.1-0.3}\text{AlSi}_3\text{O}_8=(\text{An}_{10-30})\)
3)
4)
5)
6) Anorthite (An) = \(\text{CaAl}_2\text{Si}_2\text{O}_8\)
The Feldspars

Plagioclase Feldspars \((\text{NaAlSi}_3\text{O}_8-\text{CaAl}_2\text{Si}_2\text{O}_8)\)

1) Albite (Ab) = \(\text{NaAlSi}_3\text{O}_8\) \((\text{An}_{0-10})\)
2) Oligoclase = \(\text{An}_{10-30}\)
3) Andesine = \(\text{An}_{30-50}\)
4) Labradorite = \(\text{An}_{50-70}\)
5) Bytownite = \(\text{An}_{70-90}\)
6) Anorthite (An) = \(\text{CaAl}_2\text{Si}_2\text{O}_8\)
The Feldspars

Plagioclase Feldspars (NaAlSi$_3$O$_8$-CaAl$_2$Si$_2$O$_8$)

Determination of plagioclase composition via twinning extinction angles
Tektosilicate Minerals (Feldspars)
Anorthoclase is an interesting mineral. It forms at temps above 600 °C followed by rapid cooling.
Tectosilicate Minerals (Feldspars)

Anorthoclase is an interesting mineral. It forms at temps above 600 ºC followed by rapid cooling.

If the rate of cooling is slow, exsolution (separation into 2 mineral phases occurs).

Diagram:

- Anorthoclase (600 ºC)
- Perthite
 - Albite “blebs” in orthoclase
- Antiperthite
 - Orthoclase “blebs” in albite
Anorthoclase is an interesting mineral. It forms at temps above 600 °C followed by rapid cooling.

If the rate of cooling is slow, **exsolution** (separation into 2 mineral phases occurs).
Tektosilicate Minerals (Feldspars)

Phase diagrams to the rescue!
Tektosilicate Minerals (Feldspars)

Phase diagrams to the rescue!

![Figure 4]
Tektosilicate Minerals (Feldspars)

Phase diagrams to the rescue!
Tektosilicate Minerals (Feldspars)

Phase diagrams to the rescue!
Tektosilicate Minerals (Feldspars)

Phase diagrams to the rescue!

![Phase diagram figure 4: Liquid, Alkali Feldspar Solid Solution + Liquid, Alkali Feldspar Solid Solution, 2 Feldspars.](image)
Orthoclase (Adularia/Moonstone)
\[\text{KAlSi}_3\text{O}_8\]

Crystal: Monoclinic
Pt. Group: 2/m
Habit: prismatic, blocky
SG: 2.56; H: 6
L: vitreous; Str: colourless
Col: pink, white, grey-green
Clev: perfect [001], good [010]
Optics: biaxial (-); \(\text{bir}=0.005-0.006\)
\(n_\alpha=1.518; n_\beta=1.522, n_\gamma=1.523\)
Occurrence: Felsic igneous rocks, metamorphic rocks (greenschist and above)
Tektosilicate Minerals (Orthoclase Group)

Sanidine

\[\text{[KAlSi}_3\text{O}_8] \]

Crystal: Monoclinic
Pt. Group: 2/m
Habit: prismatic, blocky
SG: 2.52; H: 6
L: vitreous; Str: colourless
Col: colourless, white, grey (red)
Clev: perfect [001], good [010]
Optics: biaxial (-); \(\text{bir} = 0.006-0.007 \)
\(n_\alpha = 1.518; \ n_\beta = 1.523, \ n_\gamma = 1.525 \)

Occurrence: high temperature felsic igneous rocks

From the Greek sanis - "little plate" and idos - "to see."
Tektosilicate Minerals (Orthoclase Group)

Microcline (Amazonite)

\[KAlSi_3O_8 \]

Crystal: Triclinic
Pt. Group: \(\overline{1} \)
Habit: prismatic, blocky
SG: 2.56; H: 6
L: vitreous/pearly; Str: colourless
Col: bluish-green, white, grey
Clev: perfect [001], good [010]
Optics: biaxial (-); \(\text{bir} = 0.007 \)
\(n_\alpha = 1.518; n_\beta = 1.522, n_\gamma = 1.525 \)
Occurrence: granite pegmatities

From the Greek *mikron* - "little" and *klinein* - "to stoop."
Tektosilicate Minerals (Plagioclase Group)

Albite (Clevelandite)

[NaAlSi$_3$O$_8$]

Crystal: Triclinic
Pt. Group: 1
Habit: prismatic, blocky
SG: 2.62; H: 7
L: vitreous; Str: colourless
Col: white (greyish, greenish, bluish)
Clev: perfect [001], good [010]
Optics: biaxial (-); bir=0.007
\[n_\alpha = 1.518; \ n_\beta = 1.522, \ n_\gamma = 1.523 \]
Occurrence: granite pegmatities etc.

From the Latin, *albus*, in allusion to the common color.
Tektosilicate Minerals (Plagioclase Group)

Oligoclase (Sunstone)
[An$_{10-30}$]

Crystal: Triclinic
Pt. Group: $\bar{1}$
Habit: massive, blocky
SG: 2.65; H: 7
L: vitreous; Str: colourless
Col: white (grey, brown, yellow)
Clev: perfect [001], good [010]
Optics: biaxial (+); bir=0.009
 $n_\alpha=1.533; n_\beta=1.537, n_\gamma=1.542$
Occurrence: granite pegmatities etc.

From the Greek, *oligos* and *kasein*, "little cleavage."
Tektosilicate Minerals (Plagioclase Group)

Labradorite (Spectrolite)
[An$_{50-70}$]

Crystal: Triclinic
Pt. Group: 1
Habit: granular, blocky striated
SG: 2.69; H: 7
L: vitreous; Str: colourless
Col: colourless, grey (irridescent)
Clev: perfect [001], good [010]
Optics: biaxial (+); bir=0.009-0.010
 $n_\alpha=1.554; \ n_\beta=1.559, \ n_\gamma=1.562$
Occurrence: Mafic igneous rocks, some metamorphic rocks

From the Greek, *oligos* and *kasein*, "little cleavage."
Anorthite (Indianite) [An]

Crystal: Triclinic
Pt. Group: \(\overline{1} \)
Habit: euhedral-blocky striated)
SG: 2.73; H: 6
L: vitreous; Str: colourless
Col: colourless, white, grey (reddish)
Clev: perfect [001], good [010]
Optics: biaxial (-); \(\text{bir} = 0.011-0.012 \)
\(n_\alpha = 1.572; \ n_\beta = 1.579, \ n_\gamma = 1.583 \)
Occurrence: Mafic igneous rocks, some metamorphic rocks

From the Greek, an + orthos, "not upright" in allusion to the oblique crystals.