Examples of non-orientable surfaces in 4-dimensional space

J. Scott Carter

University of South Alabama

KNU, August 2013
Intro

1. Thanks to Professor Bae and KNU students
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
6. A non-standard view
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
6. A non-standard view
7. Whitney’s Conjecture/Massey’s Theorem
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
6. A non-standard view
7. Whitney’s Conjecture/Massey’s Theorem
8. Standard Klein bottles
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
6. A non-standard view
7. Whitney’s Conjecture/Massey’s Theorem
8. Standard Klein bottles
9. The spun trefoil in braid form
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
6. A non-standard view
7. Whitney’s Conjecture/Massey’s Theorem
8. Standard Klein bottles
9. The spun trefoil in braid form
10. A knotted projective plane
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
6. A non-standard view
7. Whitney’s Conjecture/Massey’s Theorem
8. Standard Klein bottles
9. The spun trefoil in braid form
10. A knotted projective plane
11. A questionable example
Intro

1. Thanks to Professor Bae and KNU students
2. Joint work with Sera Kim
3. Two examples of unknotted spheres in 4-space
4. Movies, charts, and movie moves
5. The standard cross-cap
6. A non-standard view
7. Whitney’s Conjecture/Massey’s Theorem
8. Standard Klein bottles
9. The spun trefoil in braid form
10. A knotted projective plane
11. A questionable example
12. Famous problems
• Kamada’s surface braids
• Black vertices and the associated movie
• closure
Positive Cross Cap

Negative Cross Cap
Normal Euler Class

\[\text{Lk} = 1 \]
$E \in \{-2n, -2n+2, \ldots, 2n-3, 2n\}$
Whitney’s conjecture/Massey’s Theorem

The normal Euler class E of a non-orientable surface, $\#_{i=1}^{n} \mathbb{R}P_{i}^{2}$, that is embedded in 4-space is in $\{-2n, -2n + 2, \ldots, 2n - 2, 2n\}$.

Remark. Only in the case that $E = 0$ does such a surface bound a Seifert solid in 4-space.
Whitney’s conjecture/Massey’s Theorem

The normal Euler class E of a non-orientable surface, $\#_{i=1}^{n} \mathbb{RP}^2_i$, that is embedded in 4-space is in \{-2n, -2n + 2, \ldots, 2n - 2, 2n\}. Remark. Only in the case that $E = 0$ does such a surface bound a Seifert solid in 4-space.
• ¿Is this example the connected sum of the 3-twist spun trefoil and a standard projective plane?
Commentary

- ¿Is this example the connected sum of the 3-twist spun trefoil and a standard projective plane?
- ¿Is it standard?
• ¿Is this example the connected sum of the 3-twist spun trefoil and a standard projective plane?
• ¿Is it standard?
• ¿If not, what invariants can be found?
Commentary

• ¿Is this example the connected sum of the 3-twist spun trefoil and a standard projective plane?
• ¿Is it standard?
• ¿If not, what invariants can be found?
• ¿Fold set?
Problems

K — a classical knot
Problems

K — a classical knot

$S(2n + 1) = T^{\pm(2n+1)}(K)$ — an odd twist spun of

K —
Problems

\(K \) — a classical knot
\(S(2n + 1) = T^{\pm(2n+1)}(K) \) — an odd twist spun of
\(K \) — a knotted sphere in 4-space
Problems

\(K\) — a classical knot
\(S(2n + 1) = T^{\pm(2n+1)}(K)\) — an odd twist spun of
\(K\) — a knotted sphere in 4-space
\(S(2n + 1) \# \mathbb{R}P^2\) — the connected sum of \(S\) with a standard \(\mathbb{R}P^2\) with normal Euler class \(\pm 2\).
Problems

K — a classical knot

$S(2n + 1) = T^{\pm(2n+1)}(K)$ — an odd twist spun of K — a knotted sphere in 4-space

$S(2n + 1) \# \mathbb{R}P^2$ — the connected sum of S with a standard $\mathbb{R}P^2$ with normal Euler class ± 2.

¿Is $S(2n + 1)$ standard?

Problems

K — a classical knot
$S(2n + 1) = T^{\pm(2n+1)}(K)$ — an odd twist spun of
K — a knotted sphere in 4-space
$S(2n + 1) \# \mathbb{RP}^2$ — the connected sum of S with a
standard \mathbb{RP}^2 with normal Euler class ±2.
¿Is $S(2n + 1)$ standard?
¿Is $S(2n + 3)$ isotopic to $S(2n + 1)$ for all n?
Problems

K — a classical knot
$S(2n + 1) = T^{\pm(2n+1)}(K)$ — an odd twist spun of K — a knotted sphere in 4-space
$S(2n + 1)\#\mathbb{RP}^2$ — the connected sum of S with a standard \mathbb{RP}^2 with normal Euler class ± 2.
¿Is $S(2n + 1)$ standard?
¿Is $S(2n + 3)$ isotopic to $S(2n + 1)$ for all n?
The general solution to the knotting problem will give information about “fake” $\pm \mathbb{CP}^2$s — spaces that are homeomorphic to, but not diffeomorphic to, $\pm \mathbb{CP}^2$.

Problems

K — a classical knot
$S(2n + 1) = T^{\pm(2n+1)}(K)$ — an odd twist spun of
K — a knotted sphere in 4-space
$S(2n + 1) \# \mathbb{RP}^2$ — the connected sum of S with a
standard \mathbb{RP}^2 with normal Euler class ± 2.
¿Is $S(2n + 1)$ standard?
¿Is $S(2n + 3)$ isotopic to $S(2n + 1)$ for all n?
The general solution to the knotting problem will
give information about “fake” $\pm \mathbb{CP}^2$s — spaces
that are homeomorphic to, but not diffeomorphic
to, $\pm \mathbb{CP}^2$. Clearly, the sign of the \mathbb{CP}^2 is related
to the normal Euler class.
Techniques

• Movie moves, chart moves, and decker sets
Techniques

- Movie moves, chart moves, and decker sets
- Cocycle invariants for quandles that have a good involution
Techniques

- Movie moves, chart moves, and decker sets
- Cocycle invariants for quandles that have a good involution
- Put in extra cusp pairs, via lips moves, to make the surface more flexible — to do so might allow some cancelation of triple points.
Thank you very much

감사합니다
ありがとう
谢谢