Local pictures for knotted foams and G-families of quandles

J. Scott Carter

University of South Alabama

May 2012
Intelligence of Low Dimensional Topology
joint work with Atsushi Ishii and Masahico Saito
preliminaries

1. Thanks to the organizers
2. Brain-pool Trust
3. joint with Atsushi Ishii and Masahico Saito
4. Example knotted graph
5. Example of a knotted foam
6. Main result
7. Introducing knotted foams
8. G-families of quandles
9. boundaries of chains
10. The model space Y^n
11. Local descriptions of crossings
12. Summary Statements
This talk was supported by the Ministry of Education Science and Technology (MEST) and the Korean Federation of Science and Technology Societies (KOFST).
• The above movie was the first twist of a 2-twist-spin of the knotted trivalent graph 5_2.
• This is an example of a knotted foam.
• We have computed that the corresponding knotted foam has a non-trivial cocycle invariant by using a variation upon Mochizuki’s 3-cocycle.
The previous slide contained the main result.

Theorem

There is a non-trivial cocycle invariant of knotted foams.
The principle features of trivalent graphs are crossings and vertices. These are depicted here.

\[
\begin{align*}
\begin{array}{ll}
1 & 2 \\
\includegraphics[width=0.25\textwidth]{crossing_1.png} & \includegraphics[width=0.25\textwidth]{crossing_2.png}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ll}
<1,2> & <1><2> \\
\includegraphics[width=0.25\textwidth]{crossing_3.png} & \includegraphics[width=0.25\textwidth]{crossing_4.png}
\end{array}
\end{align*}
\]

is shorthand for...

is shorthand for...
Each move to a trivalent graph can be interpreted as an “atomic piece” of a surface in 4-dimensional space.
\langle 1,2 \rangle \langle 3 \rangle
G-family of quandles

after Ishii-Iwakiri-Jang-Oshiro. G is a group. Q is a set. $\forall g \in G \exists$ binary operation \lhd_g on Q s.t.

- $a \lhd_g a = a$
- $(a \lhd_g b) \lhd_h b = a \lhd_{gh} b,$
- $\lhd_g^{-1} = (\lhd_g)^{-1}$, $a \lhd_1 b = a,$
- $(a \lhd_g b) \lhd_h c = (a \lhd_h c) \lhd_{h^{-1}gh} (b \lhd_h c).$

($\forall a, b, c \in Q$, and $\forall g, h \in G$).
Examples

1. Let H be a group. $G = \text{Aut}(H)$. Define $a \triangleleft_s b = s(ab^{-1})b$.

2. Specifically, $Q = (\mathbb{Z}/(p))^n$ — row vectors $G = \text{SL}(n, \mathbb{Z}/(p))$, and $a \triangleleft_M b = aM + b - bM$.
Lemma

Let \((Q, G)\) denote a \(G\) family of quandles on \(Q\). Then \(G \times Q\) is a quandle under the binary operation \((g, a) \triangle (h, b) = (h^{-1}gh, a \triangle_h b)\).

\(G \times Q\) is a dynamical extension of \(\text{Conj}(G)\) with the dyn. cocycle \(\alpha : G \times G \rightarrow Q^{Q \times Q}\) given by \(\alpha_{g,h}(x, y) = a \triangle_h b\). In particular,

\[
\alpha_{g\triangle h, k}(\alpha_{g,h}(a, b), c) = \alpha_{g\triangle k, h\triangle k}(\alpha_{g,k}(a, c), \alpha_{h,k}(b, c)).
\]
(a, b, c ∈ Q, and g, h, k ∈ G).

⟨1, 2, 3⟩ ↔ ((g, a), (h, a), (k, a))

⟨1, 2⟩⟨3⟩ ↔ ((g, a), (h, a); (k, b))

⟨1⟩⟨2, 3⟩ ↔ ((g, a); (h, b), (k, b))

⟨1⟩⟨2⟩⟨3⟩ ↔ ((g, a); (h, b); (k, c))
Some obvious relations
Boundaries

\[\partial \langle j + 1, j + 2, \ldots, j + k \rangle \]
\[= \langle j + 1 \rangle \langle j + 2, \ldots, j + k \rangle \]
\[+ \sum_{\ell=1}^{k-1} (-1)^\ell \langle j + 1, \ldots, (j + \ell) \rangle \langle j + \ell + 1, \ldots, j + k \rangle \]
\[+ (-1)^k \langle j + 1, \ldots, j + k - 1 \rangle. \]

\[\partial (PQ) = (\partial P)Q + (-1)^{\text{dim}P} P(\partial Q). \]

In part,

\[\partial \langle j + 1 \rangle = \langle j + 1 \rangle_\rhd - _. \]
Boundaries

\[\partial <1,2> = <2>-<1 \cdot 2> + <1> \]

\[\partial <1><2>= <2>-<2> - <1 \triangle 2> + <1> \]
\[\delta \langle 1, 2, 3 \rangle = \langle 2, 3 \rangle - \langle 1 \cdot 2, 3 \rangle + \langle 1, 2 \cdot 3 \rangle - \langle 1, 2 \rangle. \]
\[\partial <1,2><3> = \]
\[(\partial <1,2>) <3> + <1,2> \partial <3> \]
\[= <2><3> - <1 \cdot 2><3> + <1><3> + <1><3> - <1,2> + <1<3, 2<3> \]

Boundaries
\[\partial \langle 1 \rangle \langle 2,3 \rangle = \langle 2,3 \rangle - \langle 2,3 \rangle - \langle 1 \rangle \langle 2 \rangle - \langle 1 \rangle \langle 2 \rangle \langle 3 \rangle + \langle 1 \rangle \langle 2 \cdot 3 \rangle \]
\[\partial (\langle 1\rangle\langle 2\rangle\langle 3\rangle) = \]
\[\langle 2\rangle\langle 3\rangle - \langle 2\rangle\langle 3\rangle - \langle 1\rangle\langle 2\rangle\langle 3\rangle + \langle 1\rangle\langle 3\rangle + \langle 1\rangle\langle 3\rangle\langle 2\rangle\langle 3\rangle - \langle 1\rangle\langle 2\rangle \]
Boundaries, Commentary

In general, we can take boundaries of lin. combos. of exps. of the form:

\[\langle 1, \ldots, j_1 \rangle \langle j_1 + 1, \ldots, j_1 + j_2 \rangle \]

\[\cdots \langle \sum_{\ell=1}^{k-1} j_\ell + 1, \ldots, \sum_{\ell=1}^{k} j_\ell \rangle. \]

These expressions correspond to products of simplices. For example, Y corresponds to a triangle, X corresponds to a square, and the moves to trivalent graphs correspond to a tetrahedron, prism, prism, and cube.
The boundaries of the expressions involving 4 variables correspond to the fundamental moves to foams. In the next few slides, I will express these in movie move terms.
The Space Y^n

Let $\Delta^{n+1} = \{ \vec{x} \in \mathbb{R}^{n+2} : \sum x_i = 1 \& 0 \leq x_i \}$ denote the standard simplex. The space $Y^n \subset \Delta^{n+1}$ is defined as follows: $Y^0 = (\frac{1}{2}, \frac{1}{2})$. Take $\Delta^n_j = \{ \vec{x} \in \Delta^{n+1} : x_j = 0 \}$. Embed a copy, $Y^{n-1}_j \subset \Delta^n_j$. Cone $\bigcup_{j=1}^{n+2} Y^{n-1}_j$ to the barycenter $b = \frac{1}{n+2}(1, 1, \ldots, 1)$ of Δ^{n+1}.

$$Y^n = C \left(\bigcup_{j=1}^{n+2} Y^{n-1}_j \right).$$
Y^0, Y^1, and Y^2
Definition of n-foams

Every point $y \in Y^n$ has a nbhd. that is homeom. to $Y^{n-k} \times D^k$. The union of these points is called the k-stratum — the union of these is a set of $\binom{n+2}{k}$ disks of dimension k, for $k = 1, \ldots, n$.

An n-foam is a top. sp. X for which each pt. $x \in X$ has a nbhd homeom. to a nbhd. of a point in Y^n.
Local pictures of knottings of an n-foam

Let (j_1, j_2, \ldots, j_k) denote an ordered partition of $n + 1$.
For example, when $n + 1 = 3$, the partitions are (3), (2, 1), (1, 2), (1, 1, 1). When $n = 4$, the partitions are (4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), and (1, 1, 1, 1).
For each such partition, we construct a local picture of a crossing as follows:
Let \((j_1, j_2, \ldots, j_k)\) denote an ordered partition of \(n + 1\). We write

\[\langle 1, \ldots, j_1 \rangle \langle j_1 + 1, \ldots, j_1 + j_2 \rangle \]

\[
\cdots \langle \sum_{\ell=1}^{k-1} j_\ell + 1, \ldots, \sum_{\ell=1}^k j_\ell \rangle,
\]

and consider \(\prod_{\ell=1}^k \Delta j_\ell\) as a fixed embedding in \(\mathbb{R}^{n+1}\). Embed

\[Y_{j_\ell-1} \subset \Delta j_\ell.\]
Local pictures of knottings

Now take

$$\bigcup_{\ell=1}^{k} (\Delta^{j_1} \times \cdots \times Y^{j_{\ell-1}} \times \cdots \times \Delta^{j_k}) \subset \mathbb{R}^{n+1} \times \{\ell\}$$,

and project this into \mathbb{R}^{n+1}. The factor ℓ is in the $(n + 2)$nd coordinate and represents the relative height of each Y.
\[
\left[(Y^{j_1 - 1} \times \Delta^{j_2} \times \cdots \times \Delta^{j_\ell} \times \cdots \times \Delta^{j_k}) \subset \mathbb{R}^{n+1} \times \{1\}\right], \\
\left[(\Delta^{j_1} \times Y^{j_2 - 1} \times \cdots \times \Delta^{j_\ell} \times \cdots \times \Delta^{j_k}) \subset \mathbb{R}^{n+1} \times \{2\}\right], \\
\cdots \\
\left[(\Delta^{j_1} \times \Delta^{j_2} \times \cdots \times Y^{j_\ell - 1} \times \cdots \times \Delta^{j_k}) \subset \mathbb{R}^{n+1} \times \{\ell\}\right], \\
\cdots \\
\left[(\Delta^{j_1} \times \Delta^{j_2} \times \cdots \times \Delta^{j_\ell} \times \cdots \times Y^{j_k - 1}) \subset \mathbb{R}^{n+1} \times \{k\}\right].
\]

These project to a 0-dimensional multiple point in \(\mathbb{R}^{n+1}\).
Summary Statements

- For each ordered partition \((j_1, \ldots, j_k)\) of \((n + 1)\), there is a 0-dimensional multiple point of an \(n\)-foam.
- The multiple point (when colored) represents a chain in the homology of a \(G\)-family of quandles.
- The sum of these chains over all multiple points is a cycle.
- The boundary of such a chain is a cycle in one dimension lower.
Summary Statements

- The 0-dimensional multiple point represents an essential isotopy move for the lower dimensional foam.
- Quandle cocycle invariants can be defined for knotted n-foams.
- More work is needed in constructing interesting knotted n-foams.
- Invariants of foams simultaneously generalize Dijkgraaf-Witten invariants and quandle cocycle invariants.
Thank you very much

감사합니다

ありがとうございます

谢谢