Classical knots, quandles, categorical quandles, and invariants

J. Scott Carter

University of South Alabama

July 2010

TAPU-KOOK 2010
Joint work with:

Alissa Crans
Mohamed Elhamdadi
& Masahico Saito
and earlier work with

Dan Jelsovsky, Seiichi Kamada, Laurel Langford, & Masahico Saito
Plan

1. The fundamental quandle
2. Quandles and quandle cocycles
3. Strict 2-quandles
4. the fundamental 2 quandle
5. local arrow systems
6. relations to the fundamental group, commutator subgroup, etc.
Theorem
For any knot diagram K and a coloring \mathcal{C} of K by a group G that has a “suitable” normal subgroup H, there exists a strict 2-quandle X with objects $O = G$, morphisms $M = H \rtimes G$, and a coloring $\tilde{\mathcal{C}}$ of a local arrow system of K by X that extends \mathcal{C}, in the sense that the restriction of $\tilde{\mathcal{C}}$ to $O = A$ coincides with \mathcal{C}.
Main Results for today

Theorem
For any knot diagram K and a coloring \mathcal{C} of K by a group G that has a “suitable” normal subgroup H, there exists a strict 2-quandle X with objects $O = G$, morphisms $M = H \rtimes G$, and a coloring $\tilde{\mathcal{C}}$ of a local arrow system of K by X that extends \mathcal{C}, in the sense that the restriction of $\tilde{\mathcal{C}}$ to $O = A$ coincides with \mathcal{C}.
In the above “suitable” means that for any pair of elements $g_1, g_2 \in G$ there exists an $h_1 \in H$ such that $h_1 g_1 = g_2$, but we can get by with weaker conditions.
In the above “suitable” means that for any pair of elements $g_1, g_2 \in G$ there exists an $h_1 \in H$ such that $h_1 g_1 = g_2$, but we can get by with weaker conditions. The example that we have in mind is $G = \pi_1(K)$ — the fundamental group.
In the above “suitable” means that for any pair of elements $g_1, g_2 \in G$ there exists an $h_1 \in H$ such that $h_1 g_1 = g_2$, but we can get by with weaker conditions. The example that we have in mind is $G = \pi_1(K)$ — the fundamental group. $H = [\pi_1, \pi_1]$ — the commutator subgroup.
In the above “suitable” means that for any pair of elements \(g_1, g_2 \in G \) there exists an \(h_1 \in H \) such that \(h_1 g_1 = g_2 \), but we can get by with weaker conditions. The example that we have in mind is \(G = \pi_1(K) \) — the fundamental group.
\(H = [\pi_1, \pi_1] \) — the commutator subgroup.
In this case we color the knot tautologically with the meridional generators, and color local arrows with specific elements in the commutator.
Definition

A quandle is a set X that has a binary operation \triangleleft such that

I. $\forall x \in X \ x \triangleleft x = x$.

II. $\forall x, y \in X \ \exists ! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.

III. $\forall x, y, z \in X \ (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.
Quandles

Definition
A *quandle* is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \quad x \triangleleft x = x$.

II. $\forall x,y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$.
We write $z = y \triangleleft \! -1 x$.

III. $\forall x,y,z \in X \quad (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

Quandles

Definition
A quandle is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \quad x \triangleleft x = x$.
II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.
Quandles

Definition
A quandle is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \quad x \triangleleft x = x$.
II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.
III. $\forall x, y, z \in X \quad (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.
Examples of Quandles

1. G is a group, $a, b \in G$,

$\quad \quad a \triangledown b = b^{-1}ab$: Conj.

2. G is a group, $a, b \in G$,

$\quad \quad a \triangledown b = b^{-1}ab$: Core.

3. M is a $\mathbb{Z}[T, T^{-1}]$-module,

$\quad \quad a \triangledown b = Ta + (1 - T)b$: LX-quandle.
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1}ab$:
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1}ab$: Conj.
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1} ab$: Conj.

2. G is a group, $a, b \in G$,
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1}ab$: Conj.

2. G is a group, $a, b \in G$, let $a \triangleleft b = ba^{-1}b$:
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1}ab$: Conj.

2. G is a group, $a, b \in G$, let $a \triangleleft b = ba^{-1}b$: Core.
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1}ab$: Conj.

2. G is a group, $a, b \in G$, let $a \triangleleft b = ba^{-1}b$: Core.

3. M is a $\mathbb{Z}[T, T^{-1}]$-module,
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1}ab$: Conj.

2. G is a group, $a, b \in G$, let $a \triangleleft b = ba^{-1}b$: Core.

3. M is a $\mathbb{Z}[T, T^{-1}]$-module, let $a \triangleleft b = Ta + (1 - T)b$:
Examples of Quandles

1. G is a group, $a, b \in G$, let $a \triangleleft b = b^{-1}ab$: Conj.
2. G is a group, $a, b \in G$, let $a \triangleleft b = ba^{-1}b$: Core.
3. M is a $\mathbb{Z}[T, T^{-1}]$-module, let $a \triangleleft b = Ta + (1 - T)b$: LX-quandle.
Quandle colorings and quandle cocycles

F(1,2) - F(1,3) + F(2,1) - F(2,4)

cocycle condition: \(F(a,b) + F(a*b,c) = F(a,b*c) + F(a*c, b*c) \)
Applications

- 2-cocycle invariants for classical knots detect knottedness (Eisermann);
- 3-cocycle invariants for classical knots can detect chirality (Fenn Rourke);
- 3-cocycle invariants for knotted surfaces can be used to give bounds on the number of triple points (Satoh);
- for example, the 2-twist-spun trefoil has at least 4 triple points when projected into 3-space (Satoh Shima);
Applications

• 2-cocycle invariants for classical knots detect knottedness (Eisermann);
• 3-cocycle invariants for classical knots can detect chirality (Fenn Rourke);
Applications

- 2-cocycle invariants for classical knots detect knottedness (Eisermann);
- 3-cocycle invariants for classical knots can detect chirality (Fenn Rourke);
- 3-cocycle invariants for knotted surfaces can be used to give bounds on the number of triple points (Satoh);
Applications

- 2-cocycle invariants for classical knots detect knottedness (Eisermann);
- 3-cocycle invariants for classical knots can detect chirality (Fenn Rourke);
- 3-cocycle invariants for knotted surfaces can be used to give bounds on the number of triple points (Satoh);
- for example, the 2-twist-spun trefoil has at least 4 triple points when projected into 3-space (Satoh Shima);
Applications continued

• 2-cocycles can be used to show that certain surfaces knots are not ribbon concordant (C. Saito);
Applications continued

- 2-cocycles can be used to show that certain surfaces knots are not ribbon concordant (C. Saito);
- hyperbolic volume can be interpreted as a quandle cocycle invariant (Inoue);
Applications continued

• 2-cocycles can be used to show that certain surfaces knots are not ribbon concordant (C. Saito);
• hyperbolic volume can be interpreted as a quandle cocycle invariant (Inoue);
• Dijkgraaf-Witten invariants can be interpreted as a quandle cocycle invariants (Hatakanaka);
Category in \mathcal{C}
Category in \mathcal{C}

Here \mathcal{C} is either the category of groups or the category of quandles. If A is an object in \mathcal{C}, then its underlying set is denoted by $|A|$. A category in \mathcal{C} is constructed:

- $O, M \in \text{Obj } \mathcal{C}$
Category in \mathcal{C}

Here \mathcal{C} is either the category of groups or the category of quandles. If A is an object in \mathcal{C}, then its underlying set is denoted by $|A|$. A category in \mathcal{C} is constructed:

- $O, M \in \text{Obj} \mathcal{C}$
- $s, t : M \to O$ and $i : O \to M$ are morphisms.
Category in \(\mathcal{C} \)

Here \(\mathcal{C} \) is either the category of groups or the category of quandles. If \(A \) is an object in \(\mathcal{C} \), then its underlying set is denoted by \(|A| \). A category in \(\mathcal{C} \) is constructed:

- \(O, M \in \text{Obj } \mathcal{C} \)
- \(s, t : M \to O \) and \(i : O \to M \) are morphisms.
- Note that
 \[
 M \times_O M = \{(f_2, f_1) : s(f_2) = t(f_1)\} \in \text{Obj } \mathcal{C}.
 \]
Category in \mathcal{C}

Here \mathcal{C} is either the category of groups or the category of quandles. If A is an object in \mathcal{C}, then its underlying set is denoted by $|A|$. A category in \mathcal{C} is constructed:

- $O, M \in \text{Obj } \mathcal{C}$
- $s, t : M \to O$ and $i : O \to M$ are morphisms.
- Note that
 $$M \times_O M = \{(f_2, f_1) : s(f_2) = t(f_1)\} \in \text{Obj } \mathcal{C}.$$
- $c : M \times_O M \to M$,
Category in \mathcal{C}

Here \mathcal{C} is either the category of groups or the category of quandles. If A is an object in \mathcal{C}, then its underlying set is denoted by $|A|$. A category in \mathcal{C} is constructed:

- $O, M \in \text{Obj } \mathcal{C}$
- $s, t : M \rightarrow O$ and $i : O \rightarrow M$ are morphisms.
- Note that $M \times_O M = \{(f_2, f_1) : s(f_2) = t(f_1)\} \in \text{Obj } \mathcal{C}$.
- $c : M \times_O M \rightarrow M$, composition
Category in \mathcal{C}

Here \mathcal{C} is either the category of groups or the category of quandles. If A is an object in \mathcal{C}, then its underlying set is denoted by $|A|$. A category in \mathcal{C} is constructed:

- $O, M \in \text{Obj} \mathcal{C}$
- $s, t : M \to O$ and $i : O \to M$ are morphisms.
- Note that $M \times_O M = \{(f_2, f_1) : s(f_2) = t(f_1)\} \in \text{Obj} \mathcal{C}$.
- $c : M \times_O M \to M$, composition denoted $c : (f_2, f_1) \mapsto f_2 \circ f_1$.
1. $s(i(x)) = t(i(x)) = x$ for any $x \in O$;
Category in \mathcal{C} continued

1. $s(i(x)) = t(i(x)) = x$ for any $x \in O$;
2. $s(f_2 \circ f_1) = s(f_1)$,
Category in \mathcal{C} continued

1. $s(i(x)) = t(i(x)) = x$ for any $x \in O$;
2. $s(f_2 \circ f_1) = s(f_1)$, $t(f_2 \circ f_1) = t(f_2)$;
Category in \mathcal{C} continued

1. $s(i(x)) = t(i(x)) = x$ for any $x \in O$;
2. $s(f_2 \circ f_1) = s(f_1)$, $t(f_2 \circ f_1) = t(f_2)$;
3. $(f_3 \circ f_2) \circ f_1 = f_3 \circ (f_2 \circ f_1)$;
Category in \mathcal{C} continued

1. $s(i(x)) = t(i(x)) = x$ for any $x \in O$;
2. $s(f_2 \circ f_1) = s(f_1)$, $t(f_2 \circ f_1) = t(f_2)$;
3. $(f_3 \circ f_2) \circ f_1 = f_3 \circ (f_2 \circ f_1)$;
4. $(i(x) \circ f_1) = f_1$, and $(f_2 \circ i(x)) = f_2$
Suppose that $x, y \in O$.

Category in \mathcal{C} final
Suppose that $x, y \in O$. Then
\[\text{hom}(x, y) = \{ f \in M : s(f) = x \& t(f) = y \}. \]
Suppose that \(x, y \in O \). Then
\[
\text{hom}(x, y) = \{ f \in M : s(f) = x \land t(f) = y \}.
\]
Given a category \(\mathcal{C} \), a category in \(\mathcal{C} \):
\[
(O, M, s, t, i, \circ)_\mathcal{C}
\]
Suppose that $x, y \in O$. Then
\[\text{hom}(x, y) = \{ f \in M : s(f) = x \ \& \ \ t(f) = y \}. \]
Given a category \mathcal{C}, a category in \mathcal{C}:
\[(O, M, s, t, i, \circ)_\mathcal{C} \text{ or } (O, M, s, t, i, \circ) \]
Suppose that $x, y \in O$. Then
\[\text{hom}(x, y) = \{ f \in M : s(f) = x \& t(f) = y \}. \]

Given a category \mathcal{C}, a category in \mathcal{C}:

$(O, M, s, t, i, \circ)_{\mathcal{C}}$ or (O, M, s, t, i, \circ)
Let \mathcal{C}_0 and \mathcal{C}_1 denote categories in which the objects have underlying sets. Suppose that $F : \mathcal{C}_0 \to \mathcal{C}_1$ is a functor such that for any object A in \mathcal{C}_0, the underlying set $|F(A)|$ is the induced image $F(|A|)$.

Denote $F(X) = \hat{X}$.

Lemma If (O, M, s, t, i, \circ) is a category in \mathcal{C}_0, then $(\hat{O}, \hat{M}, \hat{s}, \hat{t}, \hat{i}, \hat{\circ})$ is a category in \mathcal{C}_1.

Let \mathcal{C}_0 and \mathcal{C}_1 denote categories in which the objects have underlying sets. Suppose that $F : \mathcal{C}_0 \to \mathcal{C}_1$ is a functor such that for any object A in \mathcal{C}_0, the underlying set $|F(A)|$ is the induced image $F(|A|)$. Denote $F(X) = \hat{X}$.

Lemma: If (O,M,s,t,i,\circ) is a category in \mathcal{C}_0, then $(\hat{O},\hat{M},\hat{s},\hat{t},\hat{i},\hat{\circ})$ is a category in \mathcal{C}_1.
Let \mathcal{C}_0 and \mathcal{C}_1 denote categories in which the objects have underlying sets. Suppose that $F : \mathcal{C}_0 \to \mathcal{C}_1$ is a functor such that for any object A in \mathcal{C}_0, the underlying set $|F(A)|$ is the induced image $F(|A|)$. Denote $F(X) = \hat{X}$.

Lemma

If $(O, M, s, t, i, \circ)_{\mathcal{C}_0}$ is a category in \mathcal{C}_0, then $(\hat{O}, \hat{M}, \hat{s}, \hat{t}, \hat{i}, \hat{\circ})_{\mathcal{C}_1}$ is a category in \mathcal{C}_1.
Crossed Modules

Definition

A crossed module is a quadruple \((G, H, \alpha, \tau)\),
Crossed Modules

Definition
A crossed module is a quadruple \((G, H, \alpha, \tau)\), where \(G\) and \(H\) are groups,

\[
\alpha(g, h) = ghg^{-1}, \quad \tau(h) = \tau(h) = g(h)g^{-1}.
\]
Crossed Modules

Definition
A crossed module is a quadruple \((G, H, \alpha, \tau)\), where \(G\) and \(H\) are groups, \(\alpha : G \times H \to H\) defines an action of \(G\) on \(H\),
Crossed Modules

Definition
A crossed module is a quadruple (G, H, α, τ), where G and H are groups, $\alpha : G \times H \to H$ defines an action of G on H, $\tau : H \to G$ is a group homomorphism.
Crossed Modules

Definition

A crossed module is a quadruple \((G, H, \alpha, \tau)\), where \(G\) and \(H\) are groups, \(\alpha : G \times H \rightarrow H\) defines an action of \(G\) on \(H\), \(\tau : H \rightarrow G\) is a group homomorphism.

\[
\alpha(\tau(h), h') = hh'h^{-1},
\]
Crossed Modules

Definition
A crossed module is a quadruple \((G, H, \alpha, \tau)\), where \(G\) and \(H\) are groups, \(\alpha : G \times H \to H\) defines an action of \(G\) on \(H\), \(\tau : H \to G\) is a group homomorphism.

\[\alpha(\tau(h), h') = hh'h^{-1},\]

\[\tau(\alpha(g, h)) = g\tau(h)g^{-1}.$
Crossed Modules

Definition

A crossed module is a quadruple \((G, H, \alpha, \tau)\), where \(G\) and \(H\) are groups, \(\alpha : G \times H \to H\) defines an action of \(G\) on \(H\), \(\tau : H \to G\) is a group homomorphism.

\[\alpha(\tau(h), h') = hh'h^{-1},\]

\[\tau(\alpha(g, h)) = g\tau(h)g^{-1}.\]
Examples

1. Let $H \triangleleft G$ denote a normal subgroup.
Examples

1. Let $H \triangleleft G$ denote a normal subgroup. G acts on H by conjugation;
Examples

1. Let $H \triangleleft G$ denote a normal subgroup. G acts on H by conjugation; τ is the inclusion.
Examples

1. Let $H \triangleleft G$ denote a normal subgroup. G acts on H by conjugation; τ is the inclusion.
2. Let H denote a group, and let $G = \text{Aut}(H)$;
Examples

1. Let $H \triangleleft G$ denote a normal subgroup. G acts on H by conjugation; τ is the inclusion.

2. Let H denote a group, and let $G = \text{Aut}(H)$; the map τ is the inclusion of H in G as inner automorphisms.
Crossed Modules = Cat in group

Given c.mod \((G, H, \alpha, \tau)\), def \((O, M, s, t, i, \circ)_G\)
Crossed Modules = Cat in group

Given c.mod \((G, H, \alpha, \tau)\), def \((O, M, s, t, i, \circ)_G\)
- objects \(O = G\),
Crossed Modules = Cat in group

Given c.mod \((G, H, \alpha, \tau)\), def \((O, M, s, t, i, \circ)_G\)

- objects \(O = G\),
- morphisms \(M = H \rtimes G\)
Crossed Modules $= \text{Cat in group}$

Given $\text{c.mod} \ (G, H, \alpha, \tau)$, def $(O, M, s, t, i, \circ)_G$

- objects $O = G$,
- morphisms $M = H \rtimes G$ (with multiplication $(h_1, g_1) \cdot (h_2, g_2) = (h_1 \alpha(g_1, h_2), g_1 g_2)$),
Crossed Modules $= \text{Cat in group}$

Given $c\text{.mod} \ (G, H, \alpha, \tau)$, def \((O, M, s, t, i, \circ)_G\)

- objects $O = G$,
- morphisms $M = H \rtimes G$ (with multiplication $(h_1, g_1) \cdot (h_2, g_2) = (h_1 \alpha(g_1, h_2), g_1g_2)$),
- source: $s(h, g) = g$,
Crossed Modules = Cat in group

Given c.mod \((G, H, \alpha, \tau)\), def \((O, M, s, t, i, \circ)_G\)

- objects \(O = G\),
- morphisms \(M = H \rtimes G\) (with multiplication
 \((h_1, g_1) \cdot (h_2, g_2) = (h_1\alpha(g_1, h_2), g_1g_2)\)),
- source: \(s(h, g) = g\),
- target map \(t(h, g) = \tau(h)g\),
Crossed Modules $= \text{Cat in group}$

Given c.mod (G, H, α, τ), def $(O, M, s, t, i, \circ)_G$

- objects $O = G$,
- morphisms $M = H \ltimes G$ (with multiplication $(h_1, g_1) \cdot (h_2, g_2) = (h_1 \alpha(g_1, h_2), g_1 g_2)$),
- source: $s(h, g) = g$,
- target map $t(h, g) = \tau(h)g$,
- the id. $i(g) = (1, g)$,
Crossed Modules = Cat in group

Given c.mod \((G, H, \alpha, \tau)\), def \((O, M, s, t, i, \circ)_G\)

- objects \(O = G\),
- morphisms \(M = H \ltimes G\) (with multiplication \((h_1, g_1) \cdot (h_2, g_2) = (h_1 \alpha(g_1, h_2), g_1 g_2))\),
- source: \(s(h, g) = g\),
- target map \(t(h, g) = \tau(h)g\),
- the id. \(i(g) = (1, g)\),
- comp. \(((h_2, \tau(g_1)h_1) \circ (h_1, g_1) = (h_2 h_1, g_1)\).
Apply the Conj functor

For morphisms, under conj. we have
Apply the Conj functor

For morphisms, under conj. we have

\[(h_1, g_1) \triangleleft (h_2, g_2) = (\alpha(g_2^{-1}, h_2^{-1}h_1 \alpha(g_1, h_2)), g_2^{-1}g_1g_2)\]

\[= (\alpha(g_2^{-1}, h_2^{-1})\alpha(g_2^{-1}, h_1)\alpha(g_2^{-1}, \alpha(g_1, h_2)), g_2^{-1}g_1g_2)\]
Recap

- A (strict) category in the category of groups

The functor Conj: \text{groups} \rightarrow \text{quandles}.

A (strict) 2-quandle is a category in the category of quandles.

Under Conj a crossed module gives a strict 2-quandle.

There are other strict 2-quandles.
Recap

- A (strict) category in the category of groups = crossed module.
Recap

• A (strict) category in the category of groups = crossed module.

• The functor Conj: groups \rightarrow quandles.
Recap

• A (strict) category in the category of groups = crossed module.

• The functor Conj: groups \to quandles.

• A (strict) 2-quandle is a category in the category of quandles.

• Under Conj a crossed module gives a strict 2-quandle.

• There are other strict 2-quandles.
Recap

• A (strict) category in the category of groups = crossed module.
• The functor Conj: groups \rightarrow quandles.
• A (strict) 2-quandle is a category in the category of quandles.
• Under Conj a crossed module gives a strict 2-quandle.
Recap

- A (strict) category in the category of groups = crossed module.
- The functor $\text{Conj}: \text{groups} \rightarrow \text{quandles}$.
- A (strict) 2-quandle is a category in the category of quandles.
- Under Conj a crossed module gives a strict 2-quandle.
- There are other strict 2-quandles.
Fundamental strict 2-quandle

Let K denote an n-mfd.
Fundamental strict 2-quandle

Let K denote an n-mfd. embedded in an $(n + 2)$-mfd. M.
Fundamental strict 2-quandle

Let K denote an n-mfd. embedded in an $(n + 2)$-mfd. M. We define a 2-quandle $\pi^{(2)}_Q(K) = \pi^{(2)}_Q(K, M)$:
Fundamental strict 2-quandle

Let K denote an n-mfd. embedded in an $(n + 2)$-mfd. M. We define a 2-quandle
\[\pi_Q^{(2)}(K) = \pi_Q^{(2)}(K, M) : \]
- The quandle of objects: $O = \pi_Q(K)$,
Fundamental strict 2-quandle

Let K denote an n-mfd. embedded in an $(n + 2)$-mfd. M. We define a 2-quandle $\pi_Q^{(2)}(K) = \pi_Q^{(2)}(K, M)$:

- The quandle of objects: $O = \pi_Q(K)$,
- The quandle of morphisms: M hmtpy classes $a \cup \gamma \cup b$,

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{a} \\
\end{array}
\]
Fundamental strict 2-quandle

Let K denote an n-mfd. embedded in an $(n + 2)$-mfd. M. We define a 2-quandle

$$\pi_Q^{(2)}(K) = \pi_Q^{(2)}(K, M) :$$

- The quandle of objects: $O = \pi_Q(K),$
- The quandle of morphisms: M hmtpy classes $a \cup \gamma \cup b$, where a, b are arcs “$\in \pi_Q(K)$.”
Fundamental strict 2-quandle

Let K denote an n-mfd. embedded in an $(n + 2)$-mfd. M. We define a 2-quandle $\pi_Q^{(2)}(K) = \pi_Q^{(2)}(K, M)$:

- The quandle of objects: $O = \pi_Q(K)$,
- The quandle of morphisms: M hmtpy classes $a \cup \gamma \cup b$, where a, b are arcs “$\in \pi_Q(K)$.” γ is an oriented arc between the feet of a and b.
Fundamental strict 2-quandle

Let K denote an n-mfd. embedded in an $(n + 2)$-mfd. M. We define a 2-quandle $\pi_{Q}^{(2)}(K) = \pi_{Q}^{(2)}(K, M)$:

- The quandle of objects: $O = \pi_{Q}(K)$,
- The quandle of morphisms: M hmtpy classes $a \cup \gamma \cup b$, where a, b are arcs “$\in \pi_{Q}(K)$.” γ is an oriented arc between the feet of a and b.
Fundamental strict 2-quandle

- $(b, \gamma, a) \in M$

- $s(b, \gamma, a) = a$

- $t(b, \gamma, a) = b$

- $i(a) = (a, c, a)$ where c is the constant arc.

- Composition: $(a_2, \gamma_2, a_1) \circ (a_1, \gamma_1, a_0) = (a_2, \gamma_2 \circ \gamma_1, a_0)$
Fundamental strict 2-quandle

- $(b, \gamma, a) \in M$ — note: really an equiv. class.
Fundamental strict 2-quandle

- \((b, \gamma, a) \in M \) — note: really an equiv. class.
- source: \(s(b, \gamma, a) = a. \)
Fundamental strict 2-quandle

- $(b, \gamma, a) \in M$ — note: really an equiv. class.
- source: $s(b, \gamma, a) = a$.
- target: $t(b, \gamma, a) = b$.
Fundamental strict 2-quandle

- \((b, \gamma, a) \in M \) — note: really an equiv. class.
- source: \(s(b, \gamma, a) = a \).
- target: \(t(b, \gamma, a) = b \).
- id: \(i(a) = (a, c, a) \) where \(c \) is the constant arc.
Fundamental strict 2-quandle

- $(b, \gamma, a) \in M$ — note: really an equiv. class.
- source: $s(b, \gamma, a) = a$.
- target: $t(b, \gamma, a) = b$.
- id: $i(a) = (a, c, a)$ where c is the constant arc.
- Composition:
 $$(a_2, \gamma_2, a_1) \circ (a_1, \gamma_1, a_0) = (a_2, \gamma_2 \circ \gamma_1, a_0)$$
Fundamental strict 2-quandle

Quandle operations

• On objects: same as $\pi_Q(K)$
Fundamental strict 2-quandle

Quandle operations

- On objects: same as $\pi_Q(K)$
- On morphisms:
 $$(a_1, \gamma, a_0) \lhd (b_1, \delta, b_0) = (a_1 \lhd b_1, \gamma, a_0 \lhd b_0)$$
Fundamental strict 2-quandle

Quandle operations

- On objects: same as $\pi_Q(K)$
- On morphisms:
 $$ (a_1, \gamma, a_0) \triangleleft (b_1, \delta, b_0) = (a_1 \triangleleft b_1, \gamma, a_0 \triangleleft b_0) $$
Local arrow systems

A primary local arrow of a crossing τ for a knot diagram K:
Local arrow systems

A primary local arrow of a crossing \(\tau \) for a knot diagram \(K \): A local arrow \(\rho_x \) of an (over-)arc \(x \) of \(K \) :
Local arrow systems

A primary local arrow of a crossing τ for a knot diagram K: A local arrow ρ_x of an (over-)arc x of K: $x \gamma y$ $z \gamma x$ ρ_x of K:
Local arrow systems

A primary local arrow of a crossing τ for a knot diagram K: A local arrow ρ_x of an (over-)arc x of K:

A local arrow of a crossing τ is one of four arrows among the arrows $\gamma, \gamma_i, i = 1, 2, 3$.
Local arrow systems

A primary local arrow of a crossing τ for a knot diagram K: A local arrow ρ_x of an (over-)arc x

of K: \[+ \quad - \]

A local arrow of a crossing τ is one of four arrows among the arrows

γ, γ_i, $i = 1, 2, 3$.
Local Arrow systems, cont.

A set $\mathcal{R} = \mathcal{R}_C \cup \mathcal{R}_A$ of local arrows over all crossings and over-arcs of K (and inverse arrows) is called a local arrow system of K.
Colorings of local arrows systems

Let $X = (O, M, s, t, \circ)$ denote a strict 2-quandle such that every morphism is invertible.
Let $X = (O, M, s, t, \circ)$ denote a strict 2-quandle such that every morphism is invertible. A distributive element $z \in M$ satisfies $(x \circ y) \triangleleft z = (x \triangleleft z) \circ (y \triangleleft z) \ \forall x, y \in M$.
Colorings of Local Arrows systems

We color a local arrow system by
\[X = (O, M, s, t, \circ) \]
Colorings of Local Arrows systems

We color a local arrow system by

\[X = (O, M, s, t, \circ) \]

- Arcs are assigned objects
- Arrows are assigned morphisms
- Colors assigned to local arrows of arcs are assigned distributive elements
Colorings of Local Arrows systems

We color a local arrow system by
\[X = (O, M, s, t, \circ) \]

- Arcs are assigned objects
- Arrows are assigned morphisms
Colorings of Local Arrows systems

We color a local arrow system by
\(X = (O, M, s, t, \circ) \)

- Arcs are assigned objects
- Arrows are assigned morphisms
- Colors assigned to local arrows of arcs are assigned distributive elements
Colorings of Local Arrows systems

We color a local arrow system by

\[X = (O, M, s, t, \circ) \]

- Arcs are assigned objects
- Arrows are assigned morphisms
- Colors assigned to local arrows of arcs are assigned distributive elements
Colorings of Local Arrows systems

We color a local arrow system by

\[X = (O, M, s, t, \circ) \]

- Arcs are assigned objects
- Arrows are assigned morphisms
- Colors assigned to local arrows of arcs are assigned distributive elements
Colorings of Local Arrows systems

We color a local arrow system by

\[X = (O, M, s, t, \circ) \]

- Arcs are assigned objects
- Arrows are assigned morphisms
- Colors assigned to local arrows of arcs are assigned distributive elements
Theorem

There exists a one-to-one correspondence between \(\text{Col}_R(K, X) \) and \(\text{Col}_R(K', X) \) for the diagrams before and after each Reidemeister move, where \(K \) and \(K' \) are diagrams before and after the move. In particular, the cardinality of \(\text{Col}_R(K, X) \) is a knot invariant.
To show

\[\rho_x^{-1} \circ \gamma_3'^{-1} \circ \rho_z^{-1} \circ (\gamma_3 \triangleleft \rho_z) \circ (\rho_x \triangleleft \rho_z) \circ (\gamma_3' \triangleleft \rho_z)^{-1} \circ \rho_z \circ \gamma_3' = 1 \]

\[x^{-1} \gamma_3'^{-1} z^{-1} (\gamma_3 \triangleleft z)(x \triangleleft z)(\gamma_3' \triangleleft z)^{-1} z \gamma_3' = 1 \]

\[x^{-1} \gamma_3'^{-1} z^{-1} (\gamma_3 \triangleleft z)(x \triangleleft z)(\gamma_3' \triangleleft z)^{-1} z \gamma_3' = 1 \]

\[= x^{-1} \gamma_3'^{-1} z^{-1} (\gamma_3 \triangleleft z)(x \triangleleft z)\gamma_1^{-1}(\gamma_2 \triangleleft z)^{-1} z \gamma_2 y \gamma_1 \]

\[= x^{-1} \gamma_3'^{-1} z^{-1} (\gamma_2 \triangleleft z)\gamma_1^{-1}(y \triangleleft z)^{-1} (\gamma_1 \triangleleft (y \triangleleft z))(\gamma_3 \triangleleft z)^{-1} z \gamma_2 y \gamma_1 \]

\[= x^{-1} \gamma_3'^{-1} z^{-1} (\gamma_2 \triangleleft z)\gamma_1^{-1}(y \triangleleft z)^{-1} (\gamma_1 \triangleleft (y \triangleleft z))(\gamma_3 \triangleleft z)^{-1} z \gamma_2 y \gamma_1 \]

\[= x^{-1} \gamma_1^{-1} y^{-1} (\gamma_1' \triangleleft y)(x \triangleleft y)(\gamma_1 \triangleleft y)^{-1} y \gamma_1 \]

\[= 1 \]
Theorem
For any link diagram K and a coloring \mathcal{C} of K by a group G that has a “suitable” normal subgroup H there exists a strict 2-quandle X with objects $O = G$, morphisms $M = H \rtimes G$, and a coloring $\tilde{\mathcal{C}}$ of a local arrow system of K by X that extends \mathcal{C}, in the sense that the restriction of $\tilde{\mathcal{C}}$ to $O = A$ coincides with \mathcal{C}.
Theorem
For any link diagram K and a coloring \mathcal{C} of K by a group G that has a “suitable” normal subgroup H there exists a strict 2-quandle X with objects $O = G$, morphisms $M = H \rtimes G$, and a coloring $\tilde{\mathcal{C}}$ of a local arrow system of K by X that extends \mathcal{C}, in the sense that the restriction of $\tilde{\mathcal{C}}$ to $O = A$ coincides with \mathcal{C}.

Theorem
The Fox derivatives transform the fundamentally natural coloring to a coloring of the local arrow system by the strict Alexander 2-quandle \mathcal{A}.
Let $G = \pi_1(K)$; let $H = [\pi_1, \pi_1] = \pi'$. Let g_1 and g_1 be the associated meridional generators, $h_1 = g_2g_1^{-1} \in \pi'$, and $h_3 = g_1^{-1}g_2$.
Conclusion

We can modify this coloring technique to get “vertex colors.” These are related to Alexander and Brigg’s definition of the Alexander polynomial. (Next slide)
Conclusion

We can modify this coloring technique to get “vertex colors.” These are related to Alexander and Brigg’s definition of the Alexander polynomial. (Next slide) Also, we have other new invariants of classical knots and of virtual knots that result.
\[-T + T^2 - T + (1-T) = 0\]

\[T^2 - 3T + 1 = 0\]
Thanks to the organizers and the audience!