Non-orientable surface knots that have an arbitrarily large number of triple points in their projections

J. Scott Carter

University of South Alabama

Nov. 2009

Joint work with:
Kanako Oshiro
& Masahico Saito
Plan

1. Background
2. Main Result
3. Quandles
4. Symmetric Quandle Homology
5. The Quandle $Q S_6$
6. Cool Computations
7. Diagram of the Example
Background

Quandles that have good involutions
Background

Quandles that have good involutions — introduced by S. Kamada
Background

Quandles that have good involutions — introduced by S. Kamada and studied by K. Oshiro
Background

Quandles that have good involutions — introduced by S. Kamada and studied by K. Oshiro and Kamada and Oshiro —

Definition

The triple point number of a surface link is the smallest number of triple points among all diagrams of the link.
Background

Quandles that have good involutions — introduced by S. Kamada and studied by K. Oshiro and Kamada and Oshiro — were introduced to extend quandle cocycle invariants to non-orientable surfaces.
Background

Quandles that have good involutions — introduced by S. Kamada and studied by K. Oshiro and Kamada and Oshiro — were introduced to extend quandle cocycle invariants to non-orientable surfaces.

Definition

The *triple point number* of a surface link
Background

Quandles that have good involutions — introduced by S. Kamada and studied by K. Oshiro and Kamada and Oshiro — were introduced to extend quandle cocycle invariants to non-orientable surfaces.

Definition

The *triple point number* of a surface link is the smallest number of triple points among all diagrams of the link.
Triple points

Suppose that a surface is embedded in $M^3 \times I$.

Perturb the surface slightly (if necessary). Project the surface generically into the 3-mfd M. The image will have branch points, double point arcs, and triple points. The triple points are analogous to crossing points. So the triple pt. # is analogous to the crossing number.
Triple points

Suppose that a surface is embedded in $M^3 \times I$. Perturb the surface slightly (if necessary).
Triple points

Suppose that a surface is embedded in $M^3 \times I$. Perturb the surface slightly (if necessary). Project the surface generically into the 3-mfd M.
Triple points

Suppose that a surface is embedded in $M^3 \times I$. Perturb the surface slightly (if necessary). Project the surface generically into the 3-mfd M. The image will have branch points,
Suppose that a surface is embedded in $M^3 \times I$. Perturb the surface slightly (if necessary). Project the surface generically into the 3-mfd M. The image will have branch points, double point arcs,
Triple points

Suppose that a surface is embedded in $M^3 \times I$. Perturb the surface slightly (if necessary). Project the surface generically into the 3-mfd M. The image will have branch points, double point arcs, and triple points.
Triple points

Suppose that a surface is embedded in $M^3 \times I$. Perturb the surface slightly (if necessary). Project the surface generically into the 3-mfd M. The image will have branch points, double point arcs, and triple points. The triple points are analogous to crossing points. So the triple pt. # is analogous to the crossing number.
more background

The 2-twist spun trefoil has at least 4 triple points.
more background

The 2-twist spun trefoil has at least 4 triple points. Satoh-Shima.
The 2-twist spun trefoil has at least 4 triple points. Satoh-Shima.
The 2-twist spun Figure-8 has at least 6 triple points.
more background

The 2-twist spun trefoil has at least 4 triple points. Satoh-Shima.
The 2-twist spun Figure-8 has at least 6 triple points. Hatakenaka
more background

The 2-twist spun trefoil has at least 4 triple points. Satoh-Shima.
The 2-twist spun Figure-8 has at least 6 triple points. Hatakenaka
Triple point bounds for non-orientable surface links have been found
more background

The 2-twist spun trefoil has at least 4 triple points. Satoh-Shima.
The 2-twist spun Figure-8 has at least 6 triple points. Hatakenaka
Triple point bounds for non-orientable surface links have been found Oshiro and Kamada-Oshiro.
more background

The 2-twist spun trefoil has at least 4 triple points. Satoh-Shima.
The 2-twist spun Figure-8 has at least 6 triple points. Hatakenaka
Triple point bounds for non-orientable surface links have been found Oshiro and
Kamada-Oshiro.
The example given here is the first connected non-orientable surface with triple point bounds.
Main Result

Theorem

For any positive integer N,

$t(F) > N$.
Main Result

Theorem

For any positive integer \(N \), there is a closed 3-manifold \(M \) and a non-orientable surface-knot \(F \) in \(M \times [0,1] \) such that \(t(F) > N \).
Main Result

Theorem

For any positive integer N, *there is a closed 3-manifold* M *and a non-orientable surface-knot* F *in* $M \times [0, 1]$.

Main Result

Theorem

For any positive integer N, there is a closed 3-manifold M and a non-orientable surface-knot F in $M \times [0,1]$ such that $t(F) > N$.
Quandles

Definition

A *quandle* is a set X that has a binary operation \triangleleft such that

I. $\forall x \in X \ x \triangleleft x = x$.
II. $\forall x, y \in X \ \exists! z \in X$ such that $z \triangleleft x = y$.
We write $z = y \triangleleft -1 x$.
III. $\forall x, y, z \in X \ (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

If $b \triangleleft a = b \triangleleft a^{-1}$, then X is called *involutory*.

If there is an involution $\rho : X \to X$ such that $\rho(x \triangleleft y) = \rho(x) \triangleleft y$ and $x \triangleleft \rho(y) = x \triangleleft y^{-1}$, then ρ is a *good involution*.
Quandles

Definition
A quandle is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \quad x \triangleleft x = x$.

If $b \triangleleft a = b \triangleleft a^{-1}$, then X is called involutory.
If there is an involution $\rho : X \to X$ such that $\rho(x \triangleleft y) = \rho(x) \triangleleft y$ and $x \triangleleft \rho(y) = x \triangleleft y^{-1}$, then ρ is a good involution.
Quandles

Definition

A *quandle* is a set X that has a binary operation \triangleleft such that

I. $\forall x \in X \quad x \triangleleft x = x$.

II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.

If $b \triangleleft a = b \triangleleft -1 a$, then X is called *involutory*.

If there is an involution $\rho : X \to X$ such that $\rho(x \triangleleft y) = \rho(x) \triangleleft y$ and $x \triangleleft \rho(y) = x \triangleleft -1 y$, then ρ is a *good involution*.

Quandles

Definition
A quandle is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \quad x \triangleleft x = x$.
II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.
III. $\forall x, y, z \in X \quad (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$. If $b \triangleleft a = b \triangleleft^{-1} a$, then X is called involutory.
If there is an involution $\rho: X \to X$ such that $\rho(x \triangleleft y) = \rho(x) \triangleleft y$ and $x \triangleleft \rho(y) = x \triangleleft^{-1} y$, then ρ is a good involution.
Quandles

Definition
A *quandle* is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \; x \triangleleft x = x$.
II. $\forall x, y \in X \; \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.
III. $\forall x, y, z \in X \; (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.
If $b \triangleleft a = b \triangleleft^{-1} a$, then X is called *involutory*.
If there is an involution $\rho : X \rightarrow X$ such that $\rho (x \triangleleft y) = \rho (x) \triangleleft y$ and $x \triangleleft \rho (y) = x \triangleleft^{-1} y$, then ρ is a *good involution*.
Quandles

Definition

A *quandle* is a set X that has a binary operation \triangleleft such that

I. $\forall x \in X \quad x \triangleleft x = x$.

II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.

III. $\forall x, y, z \in X \quad (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

If $b \triangleleft a = b \triangleleft^{-1} a$, then X is called *involutory*.
Quandles

Definition
A quandle is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \quad x \triangleleft x = x$.
II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.
III. $\forall x, y, z \in X \quad (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.
If $b \triangleleft a = b \triangleleft^{-1} a$, then X is called involutory.
If there is an involution $\rho : X \to X$ such that
Quandles

Definition

A *quandle* is a set X that has a binary operation \triangleleft such that

I. $\forall x \in X \quad x \triangleleft x = x$.

II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.

III. $\forall x, y, z \in X \quad (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

If $b \triangleleft a = b \triangleleft^{-1} a$, then X is called *involutory*.

If there is an involution $\rho : X \rightarrow X$ such that $\rho(x \triangleleft y) = \rho(x) \triangleleft y$ and $x \triangleleft \rho(y) = x \triangleleft^{-1} y$, it is called *good*.
Quandles

Definition
A quandle is a set X that has a binary operation \triangleleft such that
I. $\forall x \in X \quad x \triangleleft x = x$.
II. $\forall x, y \in X \quad \exists! z \in X$ such that $z \triangleleft x = y$. We write $z = y \triangleleft^{-1} x$.
III. $\forall x, y, z \in X \quad (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.
If $b \triangleleft a = b \triangleleft^{-1} a$, then X is called involutory.
If there is an involution $\rho : X \rightarrow X$ such that $\rho(x \triangleleft y) = \rho(x) \triangleleft y$ and $x \triangleleft \rho(y) = x \triangleleft^{-1} y$, then ρ is a good involution.
Quandle Sets

Definition

- Assoc. grp of a quan.: $G_X = \langle x \in X : x \triangleleft y = y^{-1}xy \rangle$.
Quandle Sets

Definition

- **Assoc. grp of a quan.**:
 \[G_X = \langle x \in X : x \triangleleft y = y^{-1}xy \rangle. \]

- **Assoc. grp. of sym. quan.**:
 \[G_{(X,\rho)} = \langle x \in X : x \triangleleft y = y^{-1}xy, \ \rho(x) = x^{-1} \rangle. \]
Quandle Sets

Definition

• **Assoc. grp of a quan.:**
 \[G_X = \langle x \in X : x \triangleleft y = y^{-1}xy \rangle. \]

• **Assoc. grp. of sym. quan.:**
 \[G_{(X,\rho)} = \langle x \in X : x \triangleleft y = y^{-1}xy, \ \rho(x) = x^{-1} \rangle. \]

• **X quan., an X-set is a set Y w/ a rt. action of** \(G_X \).
Quandle Sets

Definition

- Assoc. grp of a quan.:
 \[G_X = \langle x \in X : x \triangleleft y = y^{-1}xy \rangle. \]

- Assoc. grp. of sym. quan.:
 \[G_{(X,\rho)} = \langle x \in X : x \triangleleft y = y^{-1}xy, \ \rho(x) = x^{-1} \rangle. \]

- \(X \) quan., an \(X \)-set is a set \(Y \) w/ a rt. action of \(G_X \).

- \((X,\rho) \) sym. quand., an \((X,\rho) \)-set is a set \(Y \) w/ a rt. action of \(G_{(X,\rho)} \).
\(y \cdot (x_1 x_2) = (y \cdot x_1) \cdot x_2, \)
\[y \cdot (x_1 x_2) = (y \cdot x_1) \cdot x_2, \]
\[y \cdot (x_1 \triangleleft x_2) = y \cdot (x_2^{-1} x_1 x_2), \]
\[y \cdot (x_1 x_2) = (y \cdot x_1) \cdot x_2, \]
\[y \cdot (x_1 \triangleleft x_2) = y \cdot (x_2^{-1} x_1 x_2), \quad \text{and} \]
\[y \cdot (\rho(x_1)) = y \cdot (x_1^{-1}). \]
Symmetric Quandle homology 1.

Y is an (X, ρ)-set.
Symmetric Quandle homology 1.

Y is an (X, ρ)-set.

Chains: $C_n(X)_Y$ f. ab. g. gen by:
Symmetric Quandle homology 1.

\(Y \) is an \((X, \rho)\)-set.

Chains: \(C_n(X)_Y \) f. ab. g. gen by: \((y, x_1, \ldots, x_n),\)
Symmetric Quandle homology 1.

Y is an (X, ρ)-set.

Chains: $C_n(X)_Y$ f. ab. g. gen by: (y, x_1, \ldots, x_n),

$(C_0(X)_Y = \mathbb{Z}(Y))$,
Symmetric Quandle homology 1.

Y is an (X, ρ)-set.
Chains: $C_n(X)_Y$ f. ab. g. gen by: (y, x_1, \ldots, x_n),
$(C_0(X)_Y = \mathbb{Z}(Y))$, Def:
$\partial_n : C_n(X)_Y \longrightarrow C_{n-1}(X)_Y$ by
Symmetric Quandle homology 1.

Y is an (X, ρ)-set.

Chains: $C_n(X)_Y$ f. ab. g. gen by: (y, x_1, \ldots, x_n), $(C_0(X)_Y = \mathbb{Z}(Y))$, Def:

$\partial_n : C_n(X)_Y \longrightarrow C_{n-1}(X)_Y$ by

$$
\partial_n(y, x_1, \ldots, x_n) = \sum_{i=1}^{n} (-1)^i
$$
Symmetric Quandle homology 1.

Y is an (X, ρ)-set.

Chains: $C_n(X)_Y$ f. ab. g. gen by: (y, x_1, \ldots, x_n),
$(C_0(X)_Y = \mathbb{Z}(Y))$, Def:

$\partial_n : C_n(X)_Y \longrightarrow C_{n-1}(X)_Y$ by

$$
\partial_n(y, x_1, \ldots, x_n) = \sum_{i=1}^{n} (-1)^i
$$

$$
[(y, x_1, x_2, \ldots, x_{i-1}, \hat{x}_i, x_{i+1}, \ldots, x_n)]
$$
Symmetric Quandle homology 1.

Y is an (X, ρ)-set.

Chains: $C_n(X)_Y$ f. ab. g. gen by: (y, x_1, \ldots, x_n), $(C_0(X)_Y = \mathbb{Z}(Y))$, Def:

$\partial_n : C_n(X)_Y \longrightarrow C_{n-1}(X)_Y$ by

$$\partial_n(y, x_1, \ldots, x_n) = \sum_{i=1}^{n} (-1)^i$$

$$[\left(\left(y, x_1, x_2, \ldots, x_{i-1}, \hat{x}_i, x_{i+1}, \ldots, x_n\right)\right]$$

$$-(y \cdot x_i, x_1 \triangleleft x_i, x_2 \triangleleft x_i, \ldots, x_{i-1} \triangleleft x_i, \hat{x}_i, x_{i+1}, \ldots, x_n)$$
Sym. quan. hom. 2.

Degen. chains: $D^Q_n(X)_Y$ gen. by
Sym. quan. hom. 2.

Degen. chains: $D_n^Q(X)_Y$ gen. by
$\bigcup_{i=1}^{n-1} \{(y, x_1, \ldots, x_n) \mid x_i = x_{i+1}\}$,
Degen. chains: $D_Q^Q(X)_Y$ gen. by
$\bigcup_{i=1}^{n-1}\{(y, x_1, \ldots, x_n) \mid x_i = x_{i+1}\}$,
“Sym. chains:” $D_\rho^n(X)_Y$ gen. by
Sym. quan. hom. 2.

Degen. chains: $D^Q_n(X)_Y$ gen. by
$\bigcup_{i=1}^{n-1}\{(y, x_1, \ldots, x_n) \mid x_i = x_{i+1}\}$,
“Sym. chains:” $D^\rho_n(X)_Y$ gen. by

$$(y, x_1, \ldots, x_n)$$

$$+(y \cdot x_i, x_1 \triangleleft x_i, \ldots, x_{i-1} \triangleleft x_i, \rho(x_i), x_{i+1}, \ldots, x_n)$$
Degen. chains: \(D_{n}^{Q}(X)_{Y} \) gen. by
\[\bigcup_{i=1}^{n-1} \{ (y, x_{1}, \ldots, x_{n}) \mid x_{i} = x_{i+1} \}, \]
“Sym. chains:” \(D_{n}^{\rho}(X)_{Y} \) gen. by
\[
(y, x_{1}, \ldots, x_{n})
\]
\[
+ (y \cdot x_{i}, x_{1} \triangleleft x_{i}, \ldots, x_{i-1} \triangleleft x_{i}, \rho(x_{i}), x_{i+1}, \ldots, x_{n})
\]
subcomplexes.

Sym. quan. hom. 2.
Sym. quan. hom. 2.

Degen. chains: $D_n^Q(X)_Y$ gen. by

$$\bigcup_{i=1}^{n-1} \{(y, x_1, \ldots, x_n) \mid x_i = x_{i+1}\},$$

“Sym. chains:” $D_n^\rho(X)_Y$ gen. by

$$(y, x_1, \ldots, x_n)$$

$$+ (y \cdot x_i, x_1 \triangleleft x_i, \ldots, x_{i-1} \triangleleft x_i, \rho(x_i), x_{i+1}, \ldots, x_n)$$

subcomplexes.

$$C_n^{Q,\rho}(X)_Y = C_n(X)_Y / (D_n^Q(X)_Y + D_n^\rho(X)_Y).$$
The local orientation can be reversed at the expense of applying the good involution.
Choose a region.

\[+ (y, x_1, x_2, x_3) \]
Choose a region. Get T,M,B normals outward.

\[+ (y, x_1, x_2, x_3) \]
Choose a region. Get T, M, B normals outward. Make the chain \((b, m, t)\) be the colors here.
Choose a region. Get T,M,B normals outward. Make the chain (b,m,t) be the colors here. Adjust for sign.

$$+(y, x_1, x_2, x_3)$$
Choose a region. Get T,M,B normals outward. Make the chain \((b, m, t)\) be the colors here. Adjust for sign. Eval. sym. 3-cocycle on this chain.
Lemma

Kamada, Kamada-Oshiro

Let $\theta : \mathbb{Z}(X^3) \rightarrow \mathbb{Z}$ be a sym. quan. 3-coc. s.t. $\theta(a, b, c) \in \{0, -1, 1\} \ \forall (a, b, c) \in X^3$. If $\theta([C_D]) = \alpha \in \mathbb{Z}$, then $t(F) \geq |\alpha|$.
Lemma
Kamada, Kamada-Oshiro

Let $\theta : \mathbb{Z}(X^3) \rightarrow \mathbb{Z}$ be a sym. quan. 3-coc. s.t. $\theta(a, b, c) \in \{0, -1, 1\}$ $\forall (a, b, c) \in X^3$. If $\theta([C_D]) = \alpha \in \mathbb{Z}$, then $t(F) \geq |\alpha|$.
The quandle that we need: \(\tilde{R}_3 = QS_6 \)

<table>
<thead>
<tr>
<th>(R \triangleleft C)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Had to use a computer ...

\(\chi(x,y,z) \in C^3_{Q,\rho}(\tilde{\mathcal{R}}_3, \mathbb{Z}) \) denotes char. func.
Had to use a computer ...

\(\chi(x,y,z) \in C^3_{Q,\rho}(\tilde{R}_3, \mathbb{Z}) \) denotes char. func. Def.

\[
A(x, y, z) = \\
\chi(x,y,z) - \chi(\rho(x),y,z) - \chi(x\triangleleft y,\rho(y),z) - \chi(x\triangleleft z,y\triangleleft z,\rho(z)) + \chi(\rho(x)\triangleleft y,\rho(y),z) + \chi(\rho(x)\triangleleft y,y\triangleleft z,\rho(z)) + \chi((x\triangleleft y)\triangleleft z,\rho(y)\triangleleft z,\rho(z)) - \chi((\rho(x)\triangleleft y)\triangleleft z,\rho(y)\triangleleft z,\rho(z)).
\]
Had to use a computer ...

\[\chi(x,y,z) \in C^3_{Q,\rho}(\tilde{R}_3, \mathbb{Z}) \] denotes char. func. Def.

\[A(x, y, z) = \]

\[\chi(x,y,z) - \chi(\rho(x),y,z) - \chi(x\triangleleft y,\rho(y),z) - \chi(x\triangleleft z, y\triangleleft z, \rho(z)) \]
\[+ \chi(\rho(x)\triangleleft y,\rho(y),z) + \chi(\rho(x)\triangleleft y, y\triangleleft z, \rho(z)) \]
\[+ \chi((x\triangleleft y)\triangleleft z, \rho(y)\triangleleft z, \rho(z)) - \chi((\rho(x)\triangleleft y)\triangleleft z, \rho(y)\triangleleft z, \rho(z)) \].
Lemma

Let \tilde{R}_3 be as above.
Lemma

Let \(\tilde{R}_3 \) be as above.

(i) \(H_3^{Q, \rho}(\tilde{R}_3, \mathbb{Z}) \cong \mathbb{Z} \).

(ii) The 3-chain \(c = (2, 1, 2) + (2, 0, 1) - (1, 0, 2) - (0, 2, 1) \in C_3^{Q, \rho}(\tilde{R}_3, \mathbb{Z}) \) represents a generator of \(H_3^{Q, \rho}(\tilde{R}_3, \mathbb{Z}) \).

(iii) Any 3-cycle with less than 4 basis terms (triples) is null-homologous.

(iv) \(\phi = A(0, 1, 0) + A(0, 1, 2) - A(0, 2, 1) \in \mathbb{Z}_3^{Q, \rho}(\tilde{R}_3, \mathbb{Z}) \) is dual to \([c] \), i.e. \(\phi([c]) = 1 \).
Lemma

Let \tilde{R}_3 be as above.

(i) $H^Q_3(\tilde{R}_3, \mathbb{Z}) \cong \mathbb{Z}$.

(ii) The 3-chain

$$c = (2, 1, 2) + (2, 0, 1) - (1, 0, 2) - (0, 2, 1) \in C^Q_3(\tilde{R}_{2n+1}, \mathbb{Z})$$

represents a generator of $H^Q_3(\tilde{R}_3, \mathbb{Z})$.

(iii) Any 3-cycle with less than 4 basis terms (triples) is null-homologous.

(iv) $\phi = A(0, 1, 0) + A(0, 1, 2) - A(0, 2, 1) \in Z^3(\tilde{R}_3, \mathbb{Z})$ is dual to $[c]$, i.e. $\phi([c]) = 1$.
Lemma

Let \tilde{R}_3 be as above.

(i) $H^Q_{3,\rho}(\tilde{R}_3, \mathbb{Z}) \cong \mathbb{Z}$.

(ii) The 3-chain
\[c = (2, 1, 2) + (2, 0, 1) - (1, 0, 2) - (0, 2, 1) \in C^Q_{3,\rho}(\tilde{R}_{2n+1}, \mathbb{Z}) \]
represents a generator of $H^Q_{3,\rho}(\tilde{R}_3, \mathbb{Z})$.

(iii) Any 3-cycle with less than 4 basis terms (triples) is null-homologous.
Lemma

Let \tilde{R}_3 be as above.

(i) $H^3_{Q,\rho}(\tilde{R}_3, \mathbb{Z}) \cong \mathbb{Z}$.

(ii) The 3-chain

$$c = (2, 1, 2) + (2, 0, 1) - (1, 0, 2) - (0, 2, 1) \in C^3_{Q,\rho}((\tilde{R}_{2n+1}, \mathbb{Z})$$ represents a generator of $H^3_{Q,\rho}(\tilde{R}_3, \mathbb{Z})$.

(iii) Any 3-cycle with less than 4 basis terms (triples) is null-homologous.

(iv) $\phi = A(0, 1, 0) + A(0, 1, 2) - A(0, 2, 1) \in Z^3_{Q,\rho}(\tilde{R}_3, \mathbb{Z}))$ is dual to $[c]$,
Lemma

Let \tilde{R}_3 be as above.

(i) $H^Q_3(\tilde{R}_3, \mathbb{Z}) \cong \mathbb{Z}$.

(ii) The 3-chain

$$c = (2, 1, 2) + (2, 0, 1) - (1, 0, 2) - (0, 2, 1) \in C^Q_3(\tilde{R}_{2n+1}, \mathbb{Z})$$

represents a generator of $H^Q_3(\tilde{R}_3, \mathbb{Z})$.

(iii) Any 3-cycle with less than 4 basis terms (triples) is null-homologous.

(iv) $\phi = A(0, 1, 0) + A(0, 1, 2) - A(0, 2, 1) \in Z^3_{Q, \rho}(\tilde{R}_3, \mathbb{Z})$ is dual to $[c]$, i.e. $\phi([c]) = 1$.
Ta Daaaaaa
Easier to parse
Thank you California.