Gerstenhaber, M.
Self-dual and quasi self-dual algebras.

2010 Mathematics Subject Classification: Primary 16S99, 16E40; Secondary 16D50

Reviewer: Jörg Feldvoss (1-SAL; Mobile, AL)

In general, Hochschild cohomology of an associative algebra A with coefficients in itself is not functorial. The aim of the paper is to find conditions on the algebra to ensure this functoriality. The author says that an associative algebra A is quasi self-dual if there is an isomorphism $H^∗(A, A) \rightarrow H^∗(A, A^{\text{\text{op}}})$ of graded vector spaces, where $A^{\text{\text{op}}}$ denotes the linear dual of A obtained from the bimodule action for the opposite algebra $A^{\text{\text{op}}}$ of A by interchanging the left and right actions. An associative algebra A is called self-dual if A and $A^{\text{\text{op}}}$ are isomorphic as A-bimodules.

It is proved that for any quasi self-dual algebra A the Hochschild cohomology $H^∗(A, A)$ is a contravariant functor of A (or more precisely, in the category of pairs (A, η) of quasi self-dual algebras A and isomorphisms $H^∗(A, A) \rightarrow H^∗(A, A^{\text{\text{op}}})$ of graded vector spaces). Moreover, a finite-dimensional algebra is self-dual precisely when it is a symmetric Frobenius algebra. Finally, the author shows that simplicial cohomology is the same as the Hochschild cohomology $H^∗(A, A)$ of some poset algebra A, and poset algebras are quasi self-dual.