In several papers Kashiwara developed a theory of crystal bases as a tool for investigating the structure of integrable modules over the quantized universal enveloping algebra $U_q(\mathfrak{g})$ of a Kac-Moody algebra \mathfrak{g}. Let now \mathfrak{g} be any symmetrizable Kac-Moody algebra, let X denote the weight lattice of \mathfrak{g}, and set $X_\mathbb{R} := \mathbb{R} \otimes_\mathbb{Z} X$. In this case Littelmann [Invent. Math. 116 (1994), no. 1-3, 329–346; MR1253196 (95f:17023) and Ann. of Math. (2) 142 (1995), no. 3, 499–525; MR1356780 (96m:17011)] considers the set Π of all equivalence classes of continuous piecewise linear paths $\pi : [0, 1] \to X_\mathbb{R}$ with $\pi(0) = 0$ modulo reparametrization. Moreover, for every simple root α Littelmann introduces an action of e_α and f_α (the so-called root operators) on $\Pi \cup \{0\}$ induced by the reflection through the hyperplane perpendicular to α and having properties very similar to the analogous operators considered by Kashiwara. Let λ be a dominant integral weight and let π be any path with $\pi(1) = \lambda$ that is contained in the fundamental Weyl chamber. Then the highest weight crystal $B(\lambda)$ associated to λ is realized by the orbit of the equivalence class of π under the action of the root operators.

In the paper under review the authors generalize Littlemann’s path model for a highest weight crystal $B(\lambda)$ by allowing parametrizations of paths on an interval $[0, c]$, where c is any positive number or $+\infty$ and defining modified root operators \tilde{e}_α and \tilde{f}_α acting directly on the set of such paths with a fixed parametrization. This action of the modified root operators induces an action of the root operators e_α and f_α on the set of equivalence classes of paths. Let ρ denote the sum of the fundamental weights of \mathfrak{g}. If $c \neq +\infty$, then Littlemann’s path model is recovered, and in the case $c = +\infty$ the orbit of the equivalence class of the path $\pi_{+\infty} : [0, +\infty) \to X_\mathbb{R}$, $t \mapsto t\rho$ under the action of the root operators is isomorphic to the crystal basis $B(\infty)$ of the negative part of $U_q(\mathfrak{g})$. The authors also conjecture for \mathfrak{g} being of affine or indefinite type that the same holds true if the equivalence class of the path π is replaced by the path π itself and the root operators e_α and f_α are replaced by the modified root operators \tilde{e}_α and \tilde{f}_α. This conjecture is proved in the case that \mathfrak{g} is of finite type.