Let \(\mathfrak{g} \) be a finite-dimensional complex simple Lie algebra with Cartan subalgebra \(\mathfrak{h} \). Fix a set of simple roots of \(\mathfrak{g} \) with respect to \(\mathfrak{h} \). This divides the set of all roots into positive and negative ones. Let \(\mathfrak{b}^+ \) denote the standard Borel subalgebra of \(\mathfrak{g} \) corresponding to the positive roots and let \(\mathfrak{b}^- \) denote the opposite standard Borel subalgebra of \(\mathfrak{g} \) corresponding to the negative roots. Finally, consider a Levi subalgebra \(\mathfrak{l} \) of \(\mathfrak{g} \) containing \(\mathfrak{h} \) and denote the corresponding parabolic subalgebras of \(\mathfrak{g} \) by \(\mathfrak{p}^\pm \), respectively.

Let \(U_{\hbar}(a) \) denote the quantized universal enveloping algebra of a subalgebra \(a \) of \(\mathfrak{g} \), and let \(A \) be a finite-dimensional \(U_{\hbar}(l) \)-module considered as an \(U_{\hbar}(p^\pm) \)-module with trivial action by the positive resp. negative root vectors. Then the parabolic Verma module \(M^+_A \) over \(U_{\hbar}(\mathfrak{g}) \) is the induced module \(U_{\hbar}(\mathfrak{g}) \otimes_{U_{\hbar}(p^\pm)} A \) from \(A \). Using the projection defined by the triangular decomposition of \(U_{\hbar}(\mathfrak{g}) \) with respect to \(U_{\hbar}(\mathfrak{l}) \) one can define for any finite-dimensional \(U_{\hbar}(l) \)-module \(A \) an \(U_{\hbar}(\mathfrak{g}) \)-invariant pairing between \(M^-_A \) and \(M^+_A \) induced by the pairing between \(A \) and its linear dual \(A^* \) that is equivalent to the contravariant Shapovalov form on \(M^+_A \). In this paper the author establishes an explicit relation between this pairing and the dynamical adjoint functor between a certain tensor subcategory of finite-dimensional modules over the Levi subalgebra and the parabolic category \(\mathcal{O} \). As an application it is shown that the \(U_{\hbar}(\mathfrak{sl}_n) \)-invariant limit of the Shapovalov form coincides with the star product on complex projective space that was constructed in [Lett. Math. Phys. 36 (1996), no. 4, 357–371; MR1384642 (97b:58065)].