Pan, Lei; Shu, Bin

Jantzen filtration and strong linkage principle for modular Lie superalgebras.

Forum Math **30** (2018), no. 6, 1573–1598

2010 Mathematics Subject Classification: Primary 17B50; Secondary 17B10, 17B20, 17B45

Reviewer: Jörg Feldvoss (1-SAL; Mobile, AL)

Let \mathfrak{g} be the analogue of a basic classical complex Lie superalgebra over an algebraically closed field \mathbb{F} of characteristic $p > 2$. Then the even part of \mathfrak{g} is the Lie algebra of a reductive algebraic group defined over \mathbb{F}. In particular, \mathfrak{g} is a restricted Lie superalgebra. Moreover, for large enough p the Lie superalgebra \mathfrak{g} admits a non-degenerate even supersymmetric invariant bilinear form. More precisely, there exists an algebraic supergroup G with Lie superalgebra \mathfrak{g} such that G has a subgroup scheme G_{ev}, which is a connected reductive algebraic group with Lie algebra \mathfrak{g}_{ev}, the even part of \mathfrak{g}, and there is a well-defined action of G_{ev} on \mathfrak{g} that restricts to the adjoint action on \mathfrak{g}_{ev}.

In the paper under review the authors consider the category of all finite-dimensional restricted \mathfrak{g}-modules \mathcal{M}. By fixing a maximal torus Ξ of G_{ev} many properties of \mathcal{M} can be obtained from the full subcategory \mathcal{C} that consists of those objects in \mathcal{M} that admit a rational Ξ-action which is compatible with the \mathfrak{g}-action. This strategy was successfully applied by J. C. Jantzen to Weyl modules over Frobenius kernels of semisimple algebraic groups [J. Reine Angew. Math. **317** (1980), 157–199; MR581341 (82b:20057)] and to restricted as well as non-restricted baby Verma modules over Lie algebras of reductive algebraic groups [J. Pure Appl. Algebra **152** (2000), no. 1-3, 133–185; MR1783993 (2001j:17016)]. The main results of the paper under review are an super analogue of the Jantzen filtration for baby Verma modules and a corresponding Jantzen sum formula in the Grothendieck group of \mathcal{C}. As a consequence the authors obtain a strong linkage principle which gives a necessary condition for possible compositions factors of baby Verma modules in \mathcal{C}.