
Mathematics Subject Classification 2000: *17B37, 14A22, 14F05, 14M15, 18E30, 18F20

Keywords: Complex semisimple group; quantum group at a root of unity; small quantum group; triangulated category; bounded derived category; equivariant coherent sheaf; nilpotent cone; Springer resolution; principal block; Hochschild cohomology; center

Reviewer: Jörg Feldvoss (8086)

Let G be a complex connected semisimple group of adjoint type with Lie algebra \mathfrak{g}, root system R, and root lattice \mathbb{Y}. Fix a Borel subgroup B of G with Lie algebra \mathfrak{b} and nilradical $\mathfrak{n} \subset \mathfrak{b}$. Let l be an odd integer which is larger than the Coxeter number of R and relatively prime to its index of connection (and not divisible by 3 if R has a component of type G_2) and choose a primitive l-th root of unity ξ. S. Arkhipov, the first author of the paper under review, and V. Ginzburg [J. Am. Math. Soc. 17, No. 3, 595-678 (2004; Zbl. 1061.17013)] have established the existence of a triangulated functor F from the bounded derived category $D^b\text{Coh} (\tilde{N})$ of $G \times \mathbb{C}^*$-equivariant coherent sheaves on the Springer resolution $\tilde{N} = G \times_B \mathfrak{n}$ of the singularities of the nilpotent cone N of \mathfrak{g} to the bounded derived category $D^b\text{block}(U)$ of finite-dimensional \mathbb{Y}-graded modules in the principal block of Lusztig’s quantum group U for \mathfrak{g} at the root of unity ξ satisfying certain desirable properties (e.g., the image of F generates $D^b\text{block}(U)$ as a triangulated category). The main result of the paper under review is to prove the existence of a triangulated functor F_u from the bounded derived category $D^b\text{Coh}^{G \times \mathbb{C}^*} (\tilde{N})$ of \mathbb{C}^*-equivariant coherent sheaves on the Springer resolution \tilde{N} to the bounded derived category $D^b\text{block}(u)$ of finite-dimensional modules in the principal block of the small quantum group u associated to U which has similar properties as F and is compatible with F (i.e., the composition of F_u and the forgetful functor from $D^b\text{Coh}^{G \times \mathbb{C}^*} (\tilde{N})$ to $D^b\text{Coh}^{\mathbb{C}^*} (\tilde{N})$ coincides with the composition of the restriction functor from $D^b\text{block}(U)$ to $D^b\text{block}(u)$ and F). As an application the authors obtain a geometric description of the Hochschild cohomology of the principal block of the small quantum group as the total cohomology of \tilde{N} with coefficients in the coherent sheaf of poly-vector fields on \tilde{N}. Since the center is just Hochschild cohomology in degree zero, this then can be used to give an explicit description of a certain canonically defined subalgebra of the center of u which was obtained previously by the second author under more restrictive assumptions [J. Algebra 262, No. 2, 313-331 (2003; Zbl. 1049.17011)].