Let G be a reductive algebraic group over an algebraically closed field of characteristic zero with simply connected commutator subgroup. The geometric Satake equivalence realizes the tensor category of representations of the Langlands dual \hat{G} of G as the monoidal category of $G[[t]]$-equivariant perverse sheaves (or D-modules) on the affine Grassmannian $\text{Gr}_G := G((t))/G[[t]]$ of G (where the equivariant perverse sheaves are multiplied using a certain convolution product). The goal of this paper is to realize the tensor category of representations $\text{Rep}(U_q(\hat{G}))$ of the quantum group $U_q(\hat{G})$ corresponding to \hat{G} as a geometric object closely related to the affine Grassmannian of G. Let N be a maximal unipotent subgroup of G, let $N((t))$ denote the corresponding loop group, and let $\chi : N((t)) \to \mathbb{G}_a$ be a non-degenerate additive character (normalized to have conductor 0). Define a twisted version of the category of perverse sheaves (or D-modules) on Gr_G which are $N((t))$-equivariant with respect to χ and call it the category of twisted Whittaker D-modules $\text{Whit}^\chi(\text{Gr}_G)$ on Gr_G. This theory was developed by E. Frenkel, K. Vilonen, and the author of the paper under review [Ann. Math. (2) 153, No. 3, 699-748 (2001; Zbl. 1070.11050)] and is motivated by the theory of Whittaker functions for p-adic groups. Now Jacob Lurie conjectures that $\text{Rep}(U_q(\hat{G}))$ and $\text{Whit}^\chi(\text{Gr}_G)$ are equivalent as chiral categories where $q = \exp(\pi ic)$. (Here the chiral structure on $\text{Rep}(U_q(\hat{G}))$ comes from its tensor structure.) The main result of the paper under review is an equivalence of chiral categories between the category of twisted Whittaker D-modules on the affine Grassmannian of G and the category of factorizable sheaves $\text{FS}^c(\hat{G})$ if c is irrational. Since it follows from the work of R. Bezrukavnikov, M. Finkelberg, and V. Schechtman in [Lecture Notes in Mathematics, 1691, Berlin: Springer (1998; Zbl. 0938.17016)] that $\text{FS}^c(\hat{G})$ is equivalent to $\text{Rep}(U_q(\hat{G}))$ if $q = \exp(\pi ic)$ is not a root of unity, this proves Lurie’s conjecture in the generic case.