Let q be a power of a prime number p, let \mathbb{F}_q denote the finite field with q elements, and let k denote the algebraic closure of \mathbb{F}_q. The aim of the paper under review is to survey some results for \mathbb{F}_q-rational structures on Lie modules and related affine varieties. Let G be a connected reductive algebraic k-group defined over \mathbb{F}_q with corresponding Frobenius map F and let \mathfrak{g} denote the Lie algebra of G. Then any closed conical subvariety of the restricted nullcone of \mathfrak{g} admits an \mathbb{F}_q-rational structure if and only if it is the support variety of an F-stable \mathfrak{g}-module. (Here a \mathfrak{g}-module V is called F-stable if V arises from some \mathfrak{g}^F-module via base field extension.) As an application of this and the Jantzen conjecture on the support varieties of Weyl modules (proved by Jantzen for type A and by Nakano, Parshall, and Vella for the other types) the author shows that the Zariski closures of nilpotent orbits in Lie algebras of the classical groups admit \mathbb{F}_q-rational structures when p is large enough.