Let $n = (n_1, \ldots, n_m)$ be an arbitrary m-tuple of positive integers and let $L = W(m; n)$ denote a graded generalized Jacobson-Witt algebra over an algebraically closed field of characteristic $p > 3$. The goal of the paper under review is to use the setup of generalized restricted Lie algebras to prove that, up to finitely many exceptions, irreducible representations of L with generalized p-characters of height at most $\min \{ p^{n_i} - p^{n_i-1} | 1 \leq i \leq m \} - 1$ can be obtained as modules induced from an irreducible representation of the distinguished maximal subalgebra L_0 of L. (Here the L-action on the induced modules is twisted in order to ensure that the exceptions are exactly the modules induced from the irreducible gl_m-modules having as highest weight some fundamental weight.) In particular, every irreducible module of L with generalized p-character of height between 1 and $\min \{ p^{n_i} - p^{n_i-1} | 1 \leq i \leq m \} - 1$ is induced from some irreducible L_0-module, and the number of isomorphism classes of irreducible L-modules with such a generalized p-character χ is the same as the number of isomorphism classes of irreducible L_0-modules with p-character $\chi|_{L_0}$. The main technical tool is the concept of a \mathfrak{C}-category (in the paper under review called a category of (R, L)-modules). The definition of a \mathfrak{C}-category involves an L-module structure, its restriction to L_0, a module structure coming from the defining divided power algebra of L, and several compatibility conditions, and was introduced by Skryabin [Independent systems of derivations and Lie algebra representations, in: Algebra and Analysis, Proceedings of the International Centennial Chebotarev Conference, Kazan, Russia, June 5-11, 1994. Arslanov, M. M. (ed.) et al. Berlin: Walter de Gruyter. 115-150 (1996; Zbl. 0878.17004)] to study representations of restricted Jacobson-Witt algebras. The authors show that induced modules with generalized p-characters belong to such a category. This enables them to extend some of Skryabin’s arguments from $n = (1, \ldots, 1)$ to arbitrary n. In the case of a generalized p-character of height 0 and $m > 1$ the authors also realize the exceptional irreducible modules corresponding to a fundamental weight of gl_m in terms of a certain de Rham complex. In particular, the number of isomorphism classes of irreducible modules with a generalized p-character
of height 0 and their dimensions are determined.